Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 10(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244771

ABSTRACT

Italy holds important genetic resources of small ruminant breeds. By distinguishing goat breeds at the DNA level, certification of products from specific breeds can be valorized. The aim of this study was to establish the genetic identity of Facciuta della Valnerina, a local goat population of Italy, compared with the cosmopolitan breeds, Saanen and Camosciata delle Alpi, reared in the same geographic area. A total of 116 microsatellite alleles ranging from 4 to 13 were detected at 16 loci in the three goat populations/breeds. A total of 23 private alleles with frequencies lower than 0.3 were detected in the Facciuta della Valnerina population. The mean numbers of alleles were 6.67, 4.58, and 4.92 in Facciuta della Valnerina, Camosciata delle Alpi, and Saanen, respectively. The expected heterozygosity ranged from 0.20 to 0.86. Most loci were highly polymorphic and informative (polymorphic information content ≥0.50). Factorial correspondence analysis and principal components analysis revealed very clear separation between Facciuta della Valnerina and the two reference goat breeds. Reducing the number of markers from 16 to 12 (on the basis of polymorphic information content and the number of alleles) still allowed us to distinguish the local population, indicating that microsatellite markers are capable of discriminating local livestock breeds at a low cost.

2.
Int J Mol Sci ; 18(9)2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28895894

ABSTRACT

The molecular mechanisms of transferred DNA (T-DNA) integration into the plant genome are still not completely understood. A large number of integration events have been analyzed in different species, shedding light on the molecular mechanisms involved, and on the frequent transfer of vector sequences outside the T-DNA borders, the so-called vector backbone (VB) sequences. In this work, we characterized 46 transgenic alfalfa (Medicago sativa L.) plants (events), generated in previous works, for the presence of VB tracts, and sequenced several T-DNA/genomic DNA (gDNA) junctions. We observed that about 29% of the transgenic events contained VB sequences, within the range reported in other species. Sequence analysis of the T-DNA/gDNA junctions evidenced larger deletions at LBs compared to RBs and insertions probably originated by different integration mechanisms. Overall, our findings in alfalfa are consistent with those in other plant species. This work extends the knowledge on the molecular events of T-DNA integration and can help to design better transformation protocols for alfalfa.


Subject(s)
DNA, Bacterial/genetics , DNA, Plant/genetics , Medicago sativa/genetics , Transformation, Genetic/genetics , Agrobacterium tumefaciens/genetics , Base Sequence , Genetic Engineering , Genetic Vectors , Genome, Plant , Plants, Genetically Modified/genetics , Sequence Analysis, DNA
3.
Front Plant Sci ; 7: 1137, 2016.
Article in English | MEDLINE | ID: mdl-27536305

ABSTRACT

Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The natural tolerance of barley to stress has led to increasing interest in identification of stress responsive genes through small/large-scale omics studies, comparative genomics, and overexpression of some of these genes by genetic transformation. Two major categories of proteins involved in stress tolerance are transcription factors (TFs) responsible from the re-programming of the metabolism in stress environment, and genes encoding Late Embryogenesis Abundant (LEA) proteins, antioxidant enzymes, osmolytes, and transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding factors (HvCBF4), dehydration-responsive element-binding factors (HvDREB1), and WRKYs (HvWRKY38), in transgenic plants resulted in higher tolerance to drought and salinity, possibly by effectively altering the expression levels of stress tolerance genes due to their higher DNA binding affinity. Na(+)/H(+) antiporters, channel proteins, and lipid transporters can also be the strong candidates for engineering plants for tolerance to salinity and low temperatures.

4.
G3 (Bethesda) ; 6(4): 925-38, 2016 04 07.
Article in English | MEDLINE | ID: mdl-26858330

ABSTRACT

Polyploidization as the consequence of 2n gamete formation is a prominent mechanism in plant evolution. Studying its effects on the genome, and on genome expression, has both basic and applied interest. We crossed two diploid (2n = 2x = 16) Medicago sativa plants, a subsp. falcata seed parent, and a coerulea × falcata pollen parent that form a mixture of n and 2n eggs and pollen, respectively. Such a cross produced full-sib diploid and tetraploid (2n = 4x = 32) hybrids, the latter being the result of bilateral sexual polyploidization (BSP). These unique materials allowed us to investigate the effects of BSP, and to separate the effect of intraspecific hybridization from those of polyploidization by comparing 2x with 4x full sib progeny plants. Simple sequence repeat marker segregation demonstrated tetrasomic inheritance for all chromosomes but one, demonstrating that these neotetraploids are true autotetraploids. BSP brought about increased biomass, earlier flowering, higher seed set and weight, and larger leaves with larger cells. Microarray analyses with M. truncatula gene chips showed that several hundred genes, related to diverse metabolic functions, changed their expression level as a consequence of polyploidization. In addition, cytosine methylation increased in 2x, but not in 4x, hybrids. Our results indicate that sexual polyploidization induces significant transcriptional novelty, possibly mediated in part by DNA methylation, and phenotypic novelty that could underpin improved adaptation and reproductive success of tetraploid M. sativa with respect to its diploid progenitor. These polyploidy-induced changes may have promoted the adoption of tetraploid alfalfa in agriculture.


Subject(s)
Medicago sativa/genetics , Polyploidy , Reproduction/genetics , Chromosome Segregation , Chromosomes, Plant , DNA Methylation , Gene Expression Regulation, Plant , Genetic Association Studies , Genome, Plant , Hybridization, Genetic , Mutation , Phenotype , Tetraploidy , Transcription, Genetic
5.
Methods Mol Biol ; 1385: 89-98, 2016.
Article in English | MEDLINE | ID: mdl-26614283

ABSTRACT

Antibiotic-free, efficient in vitro selection in plant genetic engineering can improve risk perception and speed up pre-market scrutiny of genetically modified crops. We provide a protocol for genetic transformation of two important crops, durum wheat and alfalfa, using a bacterial and a plant-derived selectable marker gene encoding mutated, gabaculine-insensitive glutamate 1-semialdehyde aminotransferase (GSA) enzymes. These methods can potentially be applied, with minor adaptations, to many other monocot and dicot crop plants.


Subject(s)
Genetic Engineering/methods , Intramolecular Transferases/genetics , Medicago sativa/genetics , Transformation, Genetic , Triticum/genetics , Bacterial Proteins/genetics , Genetic Markers , Medicago sativa/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Triticum/metabolism
6.
Plant Cell Rep ; 34(12): 2127-36, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26265112

ABSTRACT

KEY MESSAGE: A mutant glutamate 1-semialdehyde aminotransferase gene from the Synechococcus , inserted into tobacco plastid DNA by means of particle bombardment and antibiotic selection, conferred gabaculine resistance allowing to attain homoplasmy. Many plant species are recalcitrant to plastid genome transformation. New selections systems may help to overcome this limitation and to extend the application of this technology. A mutant hemL gene from the photosynthetic cyanobacterium Synechococcus, encoding a gabaculine-insensitive glutamate 1-semialdehyde aminotransferase (GSA), is an efficient selectable marker gene for nuclear transformation of tobacco, alfalfa and durum wheat. Since GSA functions in the plastid, we introduced the mutant hemL gene into the tobacco plastid genome along with the conventional antibiotic resistance aadA gene, in the attempt to develop a new selection system for plastome transformation. Although we were unable to directly regenerate gabaculine resistant transplastomic plants, we demonstrated the functionality of hemL in tobacco plastids by using gabaculine selection in the second and third rounds of in vitro selection that permitted to obtain the homoplasmic state in transgenic plants. Thus, the mutant hemL gene functions as a secondary selection marker in tobacco plastids. Our results encourage further attempts to test gabaculine resistant GSA for plastome transformation of crop plants in which gabaculine has stronger regeneration-inhibiting effects with respect to tobacco.


Subject(s)
Cyclohexanecarboxylic Acids/pharmacology , Enzyme Inhibitors/pharmacology , Intramolecular Transferases/metabolism , Synechococcus/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genetic Markers/genetics , Intramolecular Transferases/genetics , Medicago sativa/genetics , Medicago sativa/physiology , Mutation , Photosynthesis , Plants, Genetically Modified , Plastids/enzymology , Synechococcus/genetics , Synechococcus/physiology , Nicotiana/genetics , Nicotiana/physiology , Triticum/genetics , Triticum/physiology
7.
PLoS One ; 10(5): e0126051, 2015.
Article in English | MEDLINE | ID: mdl-25951604

ABSTRACT

Heat shock proteins (HSPs) are molecular chaperones involved in many cellular functions. It has been shown that mammalian cytosolic HSP70 binds antigenic peptides mediating the activation of the immune system, and that it plays a determining role in tumour immunogenicity. This suggests that HSP70 may be used for the production of conjugated vaccines. Human and plant HSPs share high sequence similarity and some important biological functions in vitro. In addition, plant HSPs have no endotoxic side effects. Extraction of HSP70 from plants for use as vaccine adjuvant requires enhancing its concentration in plant tissues. In this work, we explored the possibility to produce HSP70 in both transgenic and non-transgenic plants, using alfalfa as a model species. First, a transcriptional analysis of a constitutive and an inducible HSP70 genes was conducted in Arabidopsis thaliana. Then the coding sequence of the inducible form was cloned and introduced into alfalfa by Agrobacterium-mediated transformation, and the accumulation of the protein in leaf tissue of transgenic plants was demonstrated. We also tested diverse alfalfa varieties for heat-inducible expression of endogenous HSP70, revealing variety-specific responses to heat shock.


Subject(s)
HSP70 Heat-Shock Proteins/biosynthesis , Hot Temperature , Medicago sativa/metabolism , Plants, Genetically Modified/metabolism , Arabidopsis/genetics , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Transcription, Genetic
8.
Crit Rev Biotechnol ; 34(1): 77-88, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24041244

ABSTRACT

The technology to produce genetically engineered (GE) plants is celebrating its 30th anniversary and one of the major achievements has been the development of GE crops. The safety of GE crops is crucial for their adoption and has been the object of intense research work often ignored in the public debate. We have reviewed the scientific literature on GE crop safety during the last 10 years, built a classified and manageable list of scientific papers, and analyzed the distribution and composition of the published literature. We selected original research papers, reviews, relevant opinions and reports addressing all the major issues that emerged in the debate on GE crops, trying to catch the scientific consensus that has matured since GE plants became widely cultivated worldwide. The scientific research conducted so far has not detected any significant hazards directly connected with the use of GE crops; however, the debate is still intense. An improvement in the efficacy of scientific communication could have a significant impact on the future of agricultural GE. Our collection of scientific records is available to researchers, communicators and teachers at all levels to help create an informed, balanced public perception on the important issue of GE use in agriculture.


Subject(s)
Biomedical Research , Crops, Agricultural , Food Safety , Genetic Engineering , Plants, Genetically Modified , Computational Biology
9.
Int J Mol Sci ; 13(8): 10316-10335, 2012.
Article in English | MEDLINE | ID: mdl-22949863

ABSTRACT

Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.


Subject(s)
Genome, Plant , Genomics/methods , Plants/genetics , Polyploidy , High-Throughput Nucleotide Sequencing , Phenotype
10.
Plant Cell Rep ; 30(11): 1991-2000, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21691741

ABSTRACT

Methods to avoid the presence of selectable marker genes (SMG) in transgenic plants are available but not implemented in many crop species. We assessed the efficiency of simple marker-free Agrobacterium-mediated transformation techniques in alfalfa: regeneration without selection, or marker-less, and co-transformation with two vectors, one containing the SMG and one containing a non-selected gene. To easily estimate the efficiency of marker-less transformation, the nptII and the GUS markers were used as non-selected genes. After Agrobacterium treatment, somatic embryos were regenerated without selection. The percentage of transgenic embryos was determined by a second cycle of regeneration using the embryos as starting material, in the presence of kanamycin, by PCR screening of T1 progenies, and by the GUS test. In two experiments, from 0 to 1.7% of the somatic embryos were transgenic. Co-transformation was performed with two vectors, one with the hemL SMG and one with the unselected nptII gene, each carried by a different culture of Agrobacterium. Only 15 putative co-transformed plants were regenerated from two experiments, with an average co-transformation percentage of 3.7. Southern blot hybridizations and/or T(1) progeny segregation were used to confirm transgene integration, and qPCR was also used to estimate the T-DNA copy number. In the T(1) progenies obtained by crossing with a non-transgenic pollinator, marker-free segregants were obtained. Both marker-free approaches showed very low efficiency.


Subject(s)
Genetic Techniques , Medicago sativa/genetics , Transformation, Genetic , Blotting, Southern , Chromosome Segregation/genetics , Crosses, Genetic , DNA, Bacterial/genetics , DNA, Plant/genetics , DNA, Plant/isolation & purification , Gene Dosage/genetics , Genes, Plant/genetics , Genetic Markers , Genetic Vectors/genetics , Glucuronidase/metabolism , Plants, Genetically Modified , Polymerase Chain Reaction , Transgenes/genetics
11.
Sex Plant Reprod ; 22(2): 97-107, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20033460

ABSTRACT

A better knowledge of female sporogenesis and gametogenesis could have several practical applications, from commercial hybrid seed production to gene containment in GM crops. With the purpose of isolating genes involved in the megasporogenesis process, the cDNA-AFLP technique was employed to isolate transcript-derived fragments (TDF) differentially expressed between female-fertile and female-sterile full-sib alfalfa plants. This female sterility trait involves female-specific arrest of sporogenesis at early prophase associated with ectopic, massive callose deposition within the nucellus. Ninety-six TDFs were generated and BLAST analyses revealed similarities with genes involved in different Gene Ontology categories. Three TDFs were selected based on their putative functions: showing high similarity to a soybean flower-expressed beta 1,3-glucanase, to an Arabidopsis thaliana MAPKKK, and to an A. thaliana eukaryotic initiation translation factor eIF4G III, respectively. The full length mRNA sequences were obtained. RT-PCR and in situ hybridizations were performed to confirm differential expression during flower development. The genomic organization of the three genes was assessed through sequencing and Southern experiments. Sequence polymorphisms were found between sterile and fertile plants. Our approach based on differential display and bulked segregant analysis was successful in isolating genes that were differentially expressed between fertile and sterile alfalfa plants.


Subject(s)
Gene Expression Regulation, Plant , Medicago sativa/genetics , Plant Infertility , Plant Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Medicago sativa/growth & development , Medicago sativa/physiology , Molecular Sequence Data , Plant Proteins/metabolism
12.
Plant Cell Rep ; 27(5): 893-901, 2008 May.
Article in English | MEDLINE | ID: mdl-18305942

ABSTRACT

Alfalfa is very sensitive to soil acidity and its yield and stand duration are compromised due to inhibited root growth and reduced nitrogen fixation caused by Al toxicity. Soil improvement by liming is expensive and only partially effective, and conventional plant breeding for Al tolerance has had limited success. Because tobacco and papaya plants overexpressing Pseudomonas aeruginosa citrate synthase (CS) have been reported to exhibit enhanced tolerance to Al, alfalfa was engineered by introducing the CS gene controlled by the Arabidopsis Act2 constitutive promoter or the tobacco RB7 root-specific promoter. Fifteen transgenic plants were assayed for exclusion of Al from the root tip, for internal citrate content, for growth in in vitro assays, or for shoot and root growth in either hydroponics or in soil assays. Overall, only the soil assays yielded consistent results. Based on the soil assays, two transgenic events were identified that were more aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to help achieve aluminum tolerance.


Subject(s)
Aluminum/pharmacology , Bacterial Proteins/genetics , Citrate (si)-Synthase/genetics , Medicago sativa/genetics , Plants, Genetically Modified/genetics , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Blotting, Southern , Citrate (si)-Synthase/metabolism , Citrates/metabolism , Gene Expression Regulation, Plant/drug effects , Medicago sativa/physiology , Models, Genetic , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Plants, Genetically Modified/physiology , Reverse Transcriptase Polymerase Chain Reaction
13.
Plant Cell Rep ; 26(7): 1035-44, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17333020

ABSTRACT

A selectable marker gene (SMG), usually conferring resistance to an antibiotic or herbicide, is generally introduced into the plant cells with the gene(s) for the trait of interest to allow only the cells that have integrated and express the foreign sequences to regenerate into a plant. The availability of several SMGs for each plant species is useful for both basic and applied research to combine several genes of interest in the same plant. A selection system based on gabaculine (3-amino-2,3-dihydrobenzoic acid) as the selective substance and the bacterial hemL gene [encoding a mutant for of the enzyme glutamate 1-semialdehyde aminotransferase (GSA-AT)] as the SMG was previously used for genetic transformation of tobacco. The hemL gene is a good candidate for a safe SMG, because GSA-AT is present in all plants and is likely involved in one metabolic step only, so that unintended effects of its overexpression in plants are not probable. In this work, we have compared this new selection system with the conventional, kanamycin-based system for alfalfa Agrobacterium-mediated transformation. The hemL and NptII genes were placed together into a T-DNA under the control of identical promoters and terminators. We show that the gabaculine-based system is more efficient than the conventional, kanamycin-based system. The inheritance of hemL was Mendelian, and no obvious phenotypic effect of its expression was observed.


Subject(s)
Genetic Engineering/methods , Medicago sativa/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Selection, Genetic , Cyclohexanecarboxylic Acids/pharmacology , Gene Expression Regulation, Plant , Genetic Markers/genetics , Plants, Genetically Modified , Sodium-Phosphate Cotransporter Proteins, Type II/genetics , Sodium-Phosphate Cotransporter Proteins, Type II/metabolism , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...