Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 120(4): 417-432, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37976180

ABSTRACT

AIMS: Abdominal aortic aneurysm (AAA) is a highly lethal disease with progressive dilatation of the abdominal aorta accompanied by degradation and remodelling of the vessel wall due to chronic inflammation. Platelets play an important role in cardiovascular diseases, but their role in AAA is poorly understood. METHODS AND RESULTS: The present study revealed that platelets play a crucial role in promoting AAA through modulation of inflammation and degradation of the extracellular matrix (ECM). They are responsible for the up-regulation of SPP1 (osteopontin, OPN) gene expression in macrophages and aortic tissue, which triggers inflammation and remodelling and also platelet adhesion and migration into the abdominal aortic wall and the intraluminal thrombus (ILT). Further, enhanced platelet activation and pro-coagulant activity result in elevated gene expression of various cytokines, Mmp9 and Col1a1 in macrophages and Il-6 and Mmp9 in fibroblasts. Enhanced platelet activation and pro-coagulant activity were also detected in AAA patients. Further, we detected platelets and OPN in the vessel wall and in the ILT of patients who underwent open repair of AAA. Platelet depletion in experimental murine AAA reduced inflammation and ECM remodelling, with reduced elastin fragmentation and aortic diameter expansion. Of note, OPN co-localized with platelets, suggesting a potential role of OPN for the recruitment of platelets into the ILT and the aortic wall. CONCLUSION: In conclusion, our data strongly support the potential relevance of anti-platelet therapy to reduce AAA progression and rupture in AAA patients.


Subject(s)
Aortic Aneurysm, Abdominal , Matrix Metalloproteinase 9 , Humans , Animals , Mice , Matrix Metalloproteinase 9/metabolism , Osteopontin/genetics , Osteopontin/metabolism , Aortic Aneurysm, Abdominal/metabolism , Aorta, Abdominal/metabolism , Inflammation/metabolism , Macrophages/metabolism , Fibroblasts/metabolism
2.
Mol Endocrinol ; 30(2): 234-47, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26771535

ABSTRACT

Vesicular transport involving soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins is known to be responsible for many major cellular activities. In steroidogenic tissues, chronic hormone stimulation results in increased expression of proteins involved in the steroidogenic pathway, whereas acute hormone stimulation prompts the rapid transfer of cholesterol to the inner mitochondrial membrane to be utilized as substrate for steroid hormone production. Several different pathways are involved in supplying cholesterol to mitochondria, but mobilization of stored cholesteryl esters appears to initially constitute the preferred source; however, the mechanisms mediating this cholesterol transfer are not fully understood. To study the potential contribution of SNARE proteins in steroidogenesis, we examined the expression levels of various SNARE proteins in response to hormone stimulation in steroidogenic tissues and cells and established an in vitro mitochondria reconstitution assay system to assess the contribution of various SNARE proteins on cholesterol delivery for steroidogenesis. Our results from reconstitution experiments along with knockdown studies in rat primary granulosa cells and in a Leydig cell line show that soluble N-ethylmaleimide sensitive factor attachment protein-α, synaptosomal-associated protein of 25 kDa, syntaxin-5, and syntaxin-17 facilitate the transport of cholesterol to mitochondria. Thus, although StAR is required for efficient cholesterol movement into mitochondria for steroidogenesis, specific SNAREs participate and are necessary to mediate cholesterol movement to mitochondria.


Subject(s)
Cholesterol/metabolism , Mitochondria/metabolism , SNARE Proteins/metabolism , Steroids/biosynthesis , Animals , Biological Transport/drug effects , Cell Line , Female , Gene Knockdown Techniques , Mice, Inbred C57BL , Mitochondria/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , SNARE Proteins/genetics , Steroids/metabolism
3.
PLoS One ; 9(8): e105047, 2014.
Article in English | MEDLINE | ID: mdl-25111084

ABSTRACT

Within cells, lipids are stored in the form of lipid droplets (LDs), consisting of a neutral lipid core, surrounded by a phospholipid monolayer and an outer layer of protein. LDs typically accumulate either triacylglycerol (TAG) and diacylglycerol or cholesteryl ester (CE), depending on the type of tissue. Recently, there has been an increased interest in the proteins that surround LDs. LD proteins have been found to be quite diverse, from structural proteins to metabolic enzymes, proteins involved in vesicular transport, and proteins that may play a role in LD formation. Previous proteomics analyses have focused on TAG-enriched LDs, whereas CE-enriched LDs have been largely ignored. Our study has compared the LD proteins from CE-enriched LDs to TAG-enriched LDs in steroidogenic cells. In primary rat granulosa cells loaded with either HDL to produce CE-enriched LDs or fatty acids to produce TAG-enriched LDs, 61 proteins were found to be elevated in CE-enriched LDs and 40 proteins elevated in TAG-enriched LDs with 278 proteins in similar amounts. Protein expression was further validated by selected reaction monitoring (SRM) mass spectrometry (MS). SRM verified expression of 25 of 27 peptides that were previously detected by tandem mass tagging MS. Several proteins were confirmed to be elevated in CE-enriched LDs by SRM including the intermediate filament vimentin. This study is the first to compare the proteins found on CE-enriched LDs with TAG-enriched LDs and constitutes the first step in creating a better understanding of the proteins found on CE-enriched LDs in steroidogenic cells.


Subject(s)
Cholesterol Esters/metabolism , Lipid Droplets/metabolism , Proteins/analysis , Proteome/analysis , Triglycerides/metabolism , Animals , Cells, Cultured , Drosophila , Female , Gene Expression Profiling , Granulosa Cells/metabolism , Lipid Metabolism , Proteome/metabolism , Proteomics/methods , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...