Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Glycobiology ; 17(12): 1377-87, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17884842

ABSTRACT

Chitin, one of the most abundant organic substances in nature, is consumed by marine bacteria, such as Vibrio cholerae, via a multitude of tightly regulated genes (Li and Roseman 2004, Proc Natl Acad Sci USA. 101:627-631). One such gene, cod, is reported here. It encodes a chitin oligosaccharide deacetylase (COD), when cells are induced by chitobiose, (GlcNH(2))(2), or crude crab shells. COD was molecularly cloned (COD-6His), overproduced, and purified to apparent homogeneity. COD is secreted at all stages of growth by induced V. cholerae. The gene sequence predicts a 26 N-terminal amino acid signal peptide not found in the isolated protein. COD is very active with chitin oligosaccharides, is virtually inactive with GlcNAc, and slightly active with colloidal ([(3)H]-N-acetyl)-chitin. The oligosaccharides are converted almost quantitatively to products lacking one acetyl group. The latter were characterized by mass spectrometry (ESI-MS), and treatment with nitrous acid. COD catalyzes the following reactions (n = 2-6): (GlcNAc)(n)--> GlcNAc-GlcNH(2)-(GlcNAc)(n-2) + Ac(-). That is, COD hydrolyzes the N-acetyl groups attached to the penultimate GlcNAc residue. The gene bank sequence data show that cod is highly conserved in Vibrios and Photobacteria. One such gene encodes a deacetylase isolated from V. alginolytics (Ohishi et al. 1997, Biosci Biotech Biochem. 61:1113-1117; Ohishi et al. 2000, J Biosci Bioeng. 90:561-563), that is specific for (GlcNAc)(2), but inactive with higher oligosaccharides. The COD enzymatic products, GlcNAc-GlcNH(2)-(GlcNAc)(n), closely resemble those obtained by hydrolysis of the chitooligosaccharides with Nod B: GlcNH(2)-(GlcNAc)(3-4). The latter are key intermediates in the biosynthesis of Nod factors, critically important in communications between the symbiotic nitrogen fixing bacteria and plants. Conceivably, the COD products play equally important roles in cellular communications that remain to be defined.


Subject(s)
Amidohydrolases/chemistry , Chitin/metabolism , Vibrio cholerae/metabolism , Amidohydrolases/metabolism , Carbohydrate Sequence , Catalysis , Chitin/chemistry , Cloning, Molecular , Kinetics , Light , Mass Spectrometry/methods , Models, Biological , Molecular Sequence Data , Multigene Family , Nitrous Acid/chemistry , Oligosaccharides/chemistry , Sequence Analysis, DNA , Spectrometry, Mass, Electrospray Ionization
2.
J Biol Chem ; 281(26): 17579-87, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16547354

ABSTRACT

The bacterial phosphoenolpyruvate (PEP):glycose phosphotransferase system (PTS) mediates uptake/phosphorylation of sugars. The transport of all PTS sugars requires Enzyme I (EI) and a phosphocarrier histidine protein of the PTS (HPr). The PTS is stringently regulated, and a potential mechanism is the monomer/dimer transition of EI, because only the dimer accepts the phosphoryl group from PEP. EI monomer consists of two major domains, at the N and C termini (EI-N and EI-C, respectively). EI-N accepts the phosphoryl group from phospho-HPr but not PEP. However, it is phosphorylated by PEP(Mg(2+)) when complemented with EI-C. Here we report that the phosphotransfer rate increases approximately 25-fold when HPr is added to a mixture of EI-N, EI-C, and PEP(Mg(2+)). A model to explain this effect is offered. Sedimentation equilibrium results show that the association constant for dimerization of EI-C monomers is 260-fold greater than the K(a) for native EI. The ligands have no detectable effect on the secondary structure of the dimer (far UV CD) but have profound effects on the tertiary structure as determined by near UV CD spectroscopy, thermal denaturation, sedimentation equilibrium and velocity, and intrinsic fluorescence of the 2 Trp residues. The binding of PEP requires Mg(2+). For example, there is no effect of PEP on the T(m), an increase of 7 degrees C in the presence of Mg(2+), and approximately 14 degrees C when both are present. Interestingly, the dissociation constants for each of the ligands from EI-C are approximately the same as the kinetic (K(m)) constants for the ligands in the complete PTS sugar phosphorylation assays.


Subject(s)
Escherichia coli/enzymology , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Phosphotransferases (Nitrogenous Group Acceptor)/chemistry , Phosphotransferases (Nitrogenous Group Acceptor)/metabolism , Enzyme Activation/physiology , Kinetics , Ligands , Magnesium/metabolism , Phosphoenolpyruvate/metabolism , Phosphorylation , Protein Folding , Protein Structure, Tertiary , Spectrometry, Fluorescence , Temperature
3.
J Biol Chem ; 281(26): 17570-8, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16547355

ABSTRACT

Enzyme I (EI) is the first protein in the phosphotransfer sequence of the bacterial phosphoenolpyruvate:glycose phosphotransferase system. This system catalyzes sugar phosphorylation/transport and is stringently regulated. Since EI homodimer accepts the phosphoryl group from phosphoenolpyruvate (PEP), whereas the monomer does not, EI may be a major factor in controlling sugar uptake. Previous work from this and other laboratories (e.g. Dimitrova, M. N., Szczepanowski, R. H., Ruvinov, S. B., Peterkofsky, A., and Ginsburg A. (2002) Biochem. 41, 906-913), indicate that K(a) is sensitive to several parameters. We report here a systematic study of K(a) determined by sedimentation equilibrium, which showed that it varied by 1000-fold, responding to virtually every parameter tested, including temperature, phosphorylation, pH (6.5 versus 7.5), ionic strength, and especially the ligands Mg(2+) and PEP. This variability may be required for a regulatory protein. Further insight was gained by analyzing EI by sedimentation velocity, by near UV CD spectroscopy, and with a nonphosphorylatable active site mutant, EI-H189Q, which behaved virtually identically to EI. The singular properties of EI are explained by a model consistent with the results reported here and in the accompanying paper (Patel, H. V., Vyas, K. A., Mattoo, R. L., Southworth, M., Perler, F. B., Comb, D., and Roseman, S. (2006) J. Biol. Chem. 281, 17579-17587). We suggest that EI and EI-H189Q each comprise a multiplicity of conformers and progressively fewer conformers as they dimerize and bind Mg(2+) and finally PEP. Mg(2+) alone induces small or no detectable changes in structure, but large conformational changes ensue with Mg(2+)/PEP. This effect is explained by a "swiveling mechanism" (similar to that suggested for pyruvate phosphate dikinase (Herzberg, O., Chen, C. C., Kapadia, G., McGuire, M., Carroll, L. J., Noh, S. J., and Dunaway-Mariano, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 2652-2657)), which brings the C-terminal domain with the two bound ligands close to the active site His(189).


Subject(s)
Escherichia coli/enzymology , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Phosphotransferases (Nitrogenous Group Acceptor)/chemistry , Phosphotransferases (Nitrogenous Group Acceptor)/metabolism , Binding Sites/physiology , Dimerization , Enzyme Activation/physiology , Hydrogen-Ion Concentration , Ligands , Magnesium/metabolism , Mutagenesis , Phosphoenolpyruvate/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphorylation , Phosphotransferases (Nitrogenous Group Acceptor)/genetics , Protein Structure, Tertiary , Substrate Specificity , Temperature
4.
J Am Chem Soc ; 128(4): 1214-21, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16433538

ABSTRACT

The complete time-resolved fluorescence of tryptophan in the proteins monellin and IIA(Glc) has been investigated, using both an upconversion spectrophotofluorometer with 150 fs time resolution and a time-correlated single photon counting apparatus on the 100 ps to 20 ns time scale. In monellin, the fluorescence decay displays multiexponential character with decay times of 1.2 and 16 ps, and 0.6, 2.2, and 4.2 ns. In contrast, IIA(Glc) exhibited no component between 1.2 ps and 0.1 ns. For monellin, surprisingly, the 16 ps fluorescence component was found to have positive amplitude even at longer wavelengths (e.g., 400 nm). In conjunction with quantum mechanical simulation of tryptophan in monellin, the experimental decay associated spectra (DAS) and time-resolved emission spectra (TRES) indicate that this fluorescence decay time should be ascribed to a highly quenched conformer. Recent models (Peon, J.; et al. Proc. Natl.Acad. Sci. U.S.A. 2002, 99, 10964) invoked exchange-coupled relaxation of protein water to explain the fluorescence decay of monellin.


Subject(s)
Escherichia coli Proteins/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Plant Proteins/chemistry , Tryptophan/chemistry , Kinetics , Spectrometry, Fluorescence/methods
5.
J Biol Chem ; 281(17): 11450-5, 2006 Apr 28.
Article in English | MEDLINE | ID: mdl-16439362

ABSTRACT

IIAGlc, a component of the glucose-specific phosphoenolpyruvate:phosphotransferase system (PTS) of Escherichia coli, is important in regulating carbohydrate metabolism. In Glc uptake, the phosphotransfer sequence is: phosphoenolpyruvate --> Enzyme I --> HPr --> IIAGlc --> IICBGlc --> Glc. (HPr is the first phosphocarrier protein of the PTS.) We previously reported two classes of IIAGlc mutations that substantially decrease the P-transfer rate constants to/from IIAGlc. A mutant of His75 which adjoins the active site (His90), (H75Q), was 0.5% as active as wild-type IIAGlc in the reversible P-transfer to HPr. Two possible explanations were offered for this result: (a) the imidazole ring of His75 is required for charge delocalization and (b) H75Q disrupts the hydrogen bond network: Thr73, His75, phospho-His90. The present studies directly test the H-bond network hypothesis. Thr73 was replaced by Ser, Ala, or Val to eliminate the network. Because the rate constants for phosphotransfer to/from HPr were largely unaffected, we conclude that the H-bond network hypothesis is not correct. In the second class of mutants, proteolytic truncation of seven residues of the IIAGlc N terminus caused a 20-fold reduction in phosphotransfer to membrane-bound IICBGlc from Salmonella typhimurium. Here, we report the phosphotransfer rates between two genetically constructed N-terminal truncations of IIAGlc (Delta7 and Delta16) and the proteins IICBGlc and IIBGlc (the soluble cytoplasmic domain of IICBGlc). The truncations did not significantly affect reversible P-transfer to IIBGlc but substantially decreased the rate constants to IICBGlc in E. coli and S. typhimurium membranes. The results support the hypothesis (Wang, G., Peterkofsky, A., and Clore, G. M. (2000) J. Biol. Chem. 275, 39811-39814) that the N-terminal 18-residue domain "docks" IIAGlc to the lipid bilayer of membranes containing IICBGlc.


Subject(s)
Escherichia coli/enzymology , Gene Deletion , Mutation/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Escherichia coli/genetics , Kinetics , Mutagenesis, Site-Directed , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics
6.
J Biol Chem ; 280(51): 41872-80, 2005 Dec 23.
Article in English | MEDLINE | ID: mdl-16204242

ABSTRACT

During translocation across the cytoplasmic membrane of Escherichia coli, glucose is phosphorylated by phospho-IIA(Glc) and Enzyme IICB(Glc), the last two proteins in the phosphotransfer sequence of the phosphoenolpyruvate:glucose phosphotransferase system. Transient state (rapid quench) methods were used to determine the second order rate constants that describe the phosphotransfer reactions (phospho-IIA(Glc) to IICB(Glc) to Glc) and also the second order rate constants for the transfer from phospho-IIA(Glc) to molecularly cloned IIB(Glc), the soluble, cytoplasmic domain of IICB(Glc). The rate constants for the forward and reverse phosphotransfer reactions between IIA(Glc) and IICB(Glc) were 3.9 x 10(6) and 0.31 x 10(6) m(-1) s(-1), respectively, and the rate constant for the physiologically irreversible reaction between [P]IICB(Glc) and Glc was 3.2 x 10(6) m(-1) s(-1). From the rate constants, the equilibrium constants for the transfer of the phospho-group from His90 of [P]IIA(Glc) to the phosphorylation site Cys of IIB(Glc) or IICB(Glc) were found to be 3.5 and 12, respectively. These equilibrium constants signify that the thiophospho-group in these proteins has a high phosphotransfer potential, similar to that of the phosphohistidinyl phosphotransferase system proteins. In these studies, preparations of IICB(Glc) were invariably found to contain endogenous, firmly bound Glc (estimated K'(D) approximately 10(-7) m). The bound Glc was kinetically competent and was rapidly phosphorylated, indicating that IICB(Glc) has a random order, Bi Bi, substituted enzyme mechanism. The equilibrium constant for the binding of Glc was deduced from differences in the statistical goodness of fit of the phosphotransfer data to the kinetic model.


Subject(s)
Escherichia coli/enzymology , Glucose Transport Proteins, Facilitative/metabolism , Glucose/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Enzyme Stability , Kinetics , Phosphorylation , Protein Binding
7.
Biochemistry ; 44(38): 12790-6, 2005 Sep 27.
Article in English | MEDLINE | ID: mdl-16171394

ABSTRACT

The first two reactions in the phosphotransfer sequence of bacterial phosphoenolpyruvate:glycose phosphotransferase systems are the autophosphorylation of Enzyme I by phosphoenolpyruvate followed by the transfer of the phospho group to the low-molecular weight protein, HPr. Transient state kinetic methods were used to estimate the second-order rate constants for both phosphotransfer reactions. These measurements support previous conclusions that only the dimer of Enzyme I, EI2, is autophosphorylated, and that the rate of formation of dimer is slow compared to the rate of its phosphorylation. The rate constants of the two autophosphorylation reactions of EI2 by PEP are 6.6 x 10(6) M(-1) s(-1), and differ from one another by a factor of less than 3. The rate constant for the transfer reaction between phospho-EI2 and HPr is unusually large for a covalent reaction between two proteins (220 x 10(6) M(-1) s(-1)), while the constant for the reverse reaction is 4.2 x 10(6) M(-1) s(-1). Using the previously reported equilibrium constant for the autophosphorylation reaction, 1.5, the overall equilibrium constant for phosphotransfer from PEP to HPr is 80, somewhat higher than that previously reported. The results also show that EI2 can phosphorylate multiple molecules of HPr without dissociating to a monomer (EI), and that EI can accept a phospho group from phospho-HPr. These results are directly applicable to predicting the rates of phosphoenolpyruvate phosphotransferase system sugar uptake in whole cells.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Phosphoenolpyruvate/metabolism , Phosphotransferases (Nitrogenous Group Acceptor)/metabolism , Kinetics , Phosphorylation
8.
Proc Natl Acad Sci U S A ; 101(50): 17486-91, 2004 Dec 14.
Article in English | MEDLINE | ID: mdl-15557553

ABSTRACT

The phosphoenolpyruvate:glycose phosphotransferase system (PTS) participates in important functions in the bacterial cell, including the phosphorylation/uptake of PTS sugars. Enzyme I (EI), the first protein of the PTS complex, accepts the phosphoryl group from phosphoenolpyruvate, which is then transferred through a chain of proteins to the sugar. In these studies, a mutant GFP, enhanced yellow fluorescent protein (YFP), was linked to the N terminus of EI, giving Y-EI. Y-EI was active both in vitro (>/=90% compared with EI) and in vivo. Unexpectedly, the subcellular distribution of Y-EI varied significantly. Three types of fluorescence were observed: (i) diffuse (dispersed throughout the cell), (ii) punctate (concentrated in numerous discrete spots throughout the cell), and (iii) polar (at one or both ends of the cell). Cells from dense colonies grown on agar plates with LB broth or synthetic (Neidhardt) medium showed primarily bipolar or punctate fluorescence. In liquid culture, under carefully defined carbon-limiting growth conditions [ribose (non-PTS), mannitol (PTS sugar), or dl-lactate], cellular levels of enzymatically active Y-EI remain essentially constant for each carbon source, but fluorescence distribution depends on C source, cell density, growth phase, and apparently on "conditioned medium." Fluorescence was diffuse during exponential growth on LB or ribose/Neidhardt medium. On ribose they became punctate in the stationary phase, reverting to diffuse when more ribose was added. In LB, both Y-EI and a nonphosphorylatable mutant, H189Q-Y-EI, showed a diffuse fluorescence during growth, but, shortly after the addition of isopropyl beta-d-thiogalactopyranoside, Y-EI became bipolar; H189Q-Y-EI did not. The functions of EI sequestration remain to be determined.


Subject(s)
Escherichia coli/cytology , Escherichia coli/enzymology , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Cell Count , Cell Proliferation/drug effects , Culture Media/chemistry , Culture Media/pharmacology , Culture Media, Conditioned/pharmacology , Escherichia coli/genetics , Escherichia coli/growth & development , Genes, Reporter/genetics , Isopropyl Thiogalactoside/pharmacology , Microscopy, Fluorescence , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Protein Transport/drug effects , Ribose/pharmacology , Time Factors
9.
Proc Natl Acad Sci U S A ; 101(8): 2524-9, 2004 Feb 24.
Article in English | MEDLINE | ID: mdl-14983042

ABSTRACT

Chitin, an insoluble polymer of GlcNAc, is an abundant source of carbon, nitrogen, and energy for marine microorganisms. Microarray expression profiling and mutational studies of Vibrio cholerae growing on a natural chitin surface, or with the soluble chitin oligosaccharides (GlcNAc)(2-6), GlcNAc, or the glucosamine dimer (GlcN)2 identified three sets of differentially regulated genes. We show that (i) ChiS, a sensor histidine kinase, regulates expression of the (GlcNAc)(2-6) gene set, including a (GlcNAc)2 catabolic operon, two extracellular chitinases, a chitoporin, and a PilA-containing type IV pilus, designated ChiRP (chitin-regulated pilus) that confers a significant growth advantage to V. cholerae on a chitin surface; (ii) GlcNAc causes the coordinate expression of genes involved with chitin chemotaxis and adherence and with the transport and assimilation of GlcNAc; (iii) (GlcN)2 induces genes required for the transport and catabolism of nonacetylated chitin residues; and (iv) the constitutively expressed MSHA pilus facilitates adhesion to the chitin surface independent of surface chemistry. Collectively, these results provide a global portrait of a complex, multistage V. cholerae program for the efficient utilization of chitin.


Subject(s)
Chitin/metabolism , Vibrio cholerae/metabolism , Cell Adhesion/physiology , Chitin/genetics , Gene Expression Regulation, Bacterial , Kinetics , Oligonucleotide Array Sequence Analysis , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , Regulon/genetics , Reverse Transcriptase Polymerase Chain Reaction , Vibrio cholerae/genetics , Vibrio cholerae/physiology
10.
Proc Natl Acad Sci U S A ; 101(2): 627-31, 2004 Jan 13.
Article in English | MEDLINE | ID: mdl-14699052

ABSTRACT

Chitin, a highly insoluble polymer of GlcNAc, is produced in massive quantities in the marine environment. Fortunately for survival of aquatic ecosystems, chitin is rapidly catabolized by marine bacteria. Here we describe a bacterial two-component hybrid sensor/kinase (of the ArcB type) that rigorously controls expression of approximately 50 genes, many involved in chitin degradation. The sensor gene, chiS, was identified in Vibrio furnissii and Vibrio cholerae (predicted amino acid sequences, full-length: 84% identical, 93% similar). Mutants of chiS grew normally on GlcNAc but did not express extracellular chitinase, a specific chitoporin, or beta-hexosaminidases, nor did they exhibit chemotaxis, transport, or growth on chitin oligosaccharides such as (GlcNAc)(2). Expression of these systems requires three components: wild-type chiS; a periplasmic high-affinity chitin oligosaccharide, (GlcNAc)(n) (n > 1), binding protein (CBP); and the environmental signal, (GlcNAc)(n). Our data are consistent with the following model. In the uninduced state, CBP binds to the periplasmic domain of ChiS and "locks" it into the minus conformation. The environmental signal, (GlcNAc)(n), dissociates the complex by binding to CBP, releasing ChiS, yielding the plus phenotype (expression of chitinolytic genes). In V. cholerae, a cluster of 10 contiguous genes (VC0620-VC0611) apparently comprise a (GlcNAc)(2) catabolic operon. CBP is encoded by the first, VC0620, whereas VC0619-VC0616 encode a (GlcNAc)(2) ABC-type permease. Regulation of chiS requires expression of CBP but not (GlcNAc)(2) transport. (GlcNAc)(n) is suggested to be essential for signaling these cells that chitin is in the microenvironment.


Subject(s)
Chitin/metabolism , Escherichia coli Proteins , Membrane Proteins/metabolism , Oligosaccharides/metabolism , Protein Kinases/metabolism , Vibrio/metabolism , Chitin/chemistry
12.
J Biol Chem ; 277(33): 29555-60, 2002 Aug 16.
Article in English | MEDLINE | ID: mdl-12042307

ABSTRACT

We have recently reported the molecular cloning of a gene, gspK, in Vibrio cholerae that encodes a specific glucosamine kinase. We describe here the identification of bglA, a gene contiguous to gspK in a presumptive large chitin catabolic operon. BglA was molecularly cloned into Escherichia coli, and the protein BglA was overexpressed and purified to apparent homogeneity. BglA is 65 kDa (574 amino acids) with an N-terminal amino acid sequence predicted by the gene sequence, suggesting that the enzyme is cytoplasmic. The purified enzyme exhibited optimal activity with p-nitrophenyl beta-glucoside, cellobiose, and higher oligosaccharides of cellulose. No other glucosides or glycosides tested were hydrolyzed, including Glc-Glc disaccharides where the linkage is beta 1-->2, beta 1-->3, and beta 1-->6, respectively. The predicted BglA sequence bears little similarity to other proteins in the data banks. The Henrissat algorithm places BglA sequence in Family 9 of the glycosidases, suggesting it is an endoglucanase. However, the results summarized above suggested that BglA is an exoenzyme yielding Glc at each cleavage step. To resolve this apparent discrepancy, detailed kinetic studies were conducted with cellotetraose. Only exoglucanase activity was detected. The function of this enzyme in V. cholerae remains to be determined, especially because our strain of this organism does not utilize cellobiose.


Subject(s)
Vibrio cholerae/enzymology , beta-Glucosidase/genetics , Base Sequence , Cloning, Molecular , DNA Primers , Kinetics , Substrate Specificity , Vibrio cholerae/genetics , beta-Glucosidase/isolation & purification , beta-Glucosidase/metabolism
13.
J Biol Chem ; 277(18): 15573-8, 2002 May 03.
Article in English | MEDLINE | ID: mdl-11850417

ABSTRACT

We showed previously that chitin catabolism by the marine bacterium Vibrio furnissii involves at least three signal transduction systems and many genes, several of which were molecularly cloned, and the corresponding proteins were characterized. The predicted amino acid sequences of these proteins showed a high degree of identity to the corresponding proteins from Vibrio cholerae, whose complete genomic sequence has recently been determined. We have therefore initiated studies with V. cholerae. We report here a novel ATP-dependent glucosamine kinase of V. cholerae encoded by a gene designated gspK. The protein, GspK (31.6 kDa), was purified to apparent homogeneity from recombinant Escherichia coli. The product of the reaction was shown to be GlcN-6-P by matrix-assisted laser desorption/ionization-time of flight (MALDI mass spectrometry) and NMR. The K(m) values for GlcN, ATP, and MgCl(2) were 0.45, 2.4, and 2.2 mm, respectively, and the V(max) values were in the range 180-200 nmol/microg/min (approximately 6 nmol/pmol/min). Kinase activity was not observed with any other sugar, including: galactosamine, mannosamine, Glc, GlcNAc, GalNAc, mannose, 2-deoxyglucose, and oligosaccharides of chitosan. The enzyme is also ATP-specific. The kinase can be used to specifically determine micro quantities of GlcN in acid hydrolysates of glycoconjugates. The physiological function of this enzyme remains to be determined.


Subject(s)
Bacterial Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases/metabolism , Vibrio cholerae/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Chromatography, Ion Exchange , Cloning, Molecular , Escherichia coli , Glucosamine/metabolism , Hydrogen-Ion Concentration , Kinetics , Magnetic Resonance Spectroscopy , Phosphotransferases/genetics , Phosphotransferases/isolation & purification , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...