Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cancer ; 4(8): 1157-1175, 2023 08.
Article in English | MEDLINE | ID: mdl-37537299

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. ß-Catenin (CTNNB1)-mutated HCC represents 30% of cases of the disease with no precision therapeutics available. Using chemical libraries derived from clinical multi-kinase inhibitor (KI) scaffolds, we screened HCC organoids to identify WNTinib, a KI with exquisite selectivity in CTNNB1-mutated human and murine models, including patient samples. Multiomic and target engagement analyses, combined with rescue experiments and in vitro and in vivo efficacy studies, revealed that WNTinib is superior to clinical KIs and inhibits KIT/mitogen-activated protein kinase (MAPK) signaling at multiple nodes. Moreover, we demonstrate that reduced engagement on BRAF and p38α kinases by WNTinib relative to several multi-KIs is necessary to avoid compensatory feedback signaling-providing a durable and selective transcriptional repression of mutant ß-catenin/Wnt targets through nuclear translocation of the EZH2 transcriptional repressor. Our studies uncover a previously unknown mechanism to harness the KIT/MAPK/EZH2 pathway to potently and selectively antagonize CTNNB1-mutant HCC with an unprecedented wide therapeutic index.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , beta Catenin/genetics , beta Catenin/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Transcription Factors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
2.
J Clin Oncol ; 39(29): 3217-3228, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34110923

ABSTRACT

PURPOSE: Clinical outcomes of patients with neuroblastoma range from spontaneous tumor regression to fatality. Hence, understanding the mechanisms that cause tumor progression is crucial for the treatment of patients. In this study, we show that FOXR2 activation identifies a subset of neuroblastoma tumors with unfavorable outcome and we investigate the mechanism how FOXR2 relates to poor outcome in patients. MATERIALS AND METHODS: We analyzed three independent transcriptional data sets of in total 1030 primary neuroblastomas with full clinical annotation. We performed immunoprecipitation for FOXR2 and MYCN and silenced FOXR2 expression in two neuroblastoma cell lines to examine the effect on cellular processes, transcriptome, and MYCN protein levels. Tumor samples were analyzed for protein levels of FOXR2 and MYCN. RESULTS: In three combined neuroblastoma data sets, 9% of tumors show expression of FOXR2 but have low levels of MYCN mRNA. FOXR2 expression identifies a group of patients with unfavorable outcome, showing 10-year overall survival rates of 53%-59%, and proves to be an independent prognostic factor compared with established risk factors. Transcriptionally, FOXR2-expressing tumors are very similar to MYCN-amplified tumors, suggesting that they might share a common mechanism of tumor initiation. FOXR2 knockdown in FOXR2-expressing neuroblastoma cell lines resulted in cell cycle arrest, reduced cell growth, cell death, and reduced MYCN protein levels, all indicating that FOXR2 is essential for these tumors. Finally, we show that FOXR2 binds and stabilizes MYCN protein and MYCN protein levels are highly increased in FOXR2-expressing tumors, in several cases comparable with MYCN-amplified samples. CONCLUSION: The stabilization of MYCN by FOXR2 represents an alternative mechanism to MYCN amplification to increase MYCN protein levels. As such, FOXR2 expression identifies another subset of neuroblastoma patients with unfavorable clinical outcome.


Subject(s)
Forkhead Transcription Factors/physiology , Gene Amplification , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/mortality , Cell Line, Tumor , Humans , N-Myc Proto-Oncogene Protein/chemistry , Neuroblastoma/genetics , Neuroblastoma/pathology , Prognosis , Protein Stability , Telomerase/genetics
3.
Nat Commun ; 11(1): 5414, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110075

ABSTRACT

The neoplastic stromal cells of giant cell tumor of bone (GCTB) carry a mutation in H3F3A, leading to a mutant histone variant, H3.3-G34W, as a sole recurrent genetic alteration. We show that in patient-derived stromal cells H3.3-G34W is incorporated into the chromatin and associates with massive epigenetic alterations on the DNA methylation, chromatin accessibility and histone modification level, that can be partially recapitulated in an orthogonal cell line system by the introduction of H3.3-G34W. These epigenetic alterations affect mainly heterochromatic and bivalent regions and provide possible explanations for the genomic instability, as well as the osteolytic phenotype of GCTB. The mutation occurs in differentiating mesenchymal stem cells and associates with an impaired osteogenic differentiation. We propose that the observed epigenetic alterations reflect distinct differentiation stages of H3.3 WT and H3.3 MUT stromal cells and add to H3.3-G34W-associated changes.


Subject(s)
Bone Neoplasms/genetics , Giant Cell Tumor of Bone/genetics , Histones/genetics , Osteogenesis , Bone Neoplasms/metabolism , Bone Neoplasms/physiopathology , DNA Methylation , Epigenesis, Genetic , Epigenomics , Giant Cell Tumor of Bone/metabolism , Giant Cell Tumor of Bone/physiopathology , Histones/metabolism , Humans , Mutation, Missense
SELECTION OF CITATIONS
SEARCH DETAIL
...