Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc Toxicol ; Chapter 4: Unit4.17, 2005.
Article in English | MEDLINE | ID: mdl-23045124

ABSTRACT

Carbonyl reducing enzymes are involved in the metabolism of endogenous as well as xenobiotic molecules. Enzymes that catalyze the reversible oxidoreduction of aldehyde and ketone moieties include alcohol dehydrogenases, aldo-keto reductases, quinone reductases, and short-chain dehydrogenases/reductases. These enzymes differ with respect to subcellular location, cofactor dependence, and susceptibility to chemical inhibitors. Thus, it is possible to assess the relative contributions of these enzyme systems in the hepatic metabolism of a particular xenobiotic through simple in vitro experiments with commercially available reagents. The approaches described in this unit assume the availability of analytical procedures for measuring the parent compound and metabolites, such as HPLC with radiochemical, UV, or MS detection. Thus, the purpose of this unit is to outline methods for the study of the enzymatic carbonyl reduction of a drug development candidate or other xenobiotic molecule of interest.


Subject(s)
Ketones/metabolism , Liver/metabolism , Xenobiotics/metabolism , Chromatography, High Pressure Liquid , Humans , Spectrophotometry, Ultraviolet , Subcellular Fractions/metabolism
2.
Drug Metab Rev ; 36(2): 335-61, 2004 May.
Article in English | MEDLINE | ID: mdl-15237858

ABSTRACT

Carbonyl reduction plays a significant role in physiological processes throughout the body. Although much is known about endogenous carbonyl metabolism, much less is known about the roles of carbonyl-reducing enzymes in xenobiotic metabolism. Multiple pathways exist in humans for metabolizing carbonyl moieties of xenobiotics to their corresponding alcohols, readying these molecules for subsequent conjugation and/or excretion. When exploring carbonyl reduction clearance pathways for a drug development candidate, it is possible to assess the relative contributions of these enzymes due to their differences in subcellular locations, cofactor dependence, and inhibitor profiles. In addition, the contributions of these enzymes may be explored by varying incubation conditions, such as pH. Presently, individual isoforms of carbonyl-reducing enzymes are not widely available, either in recombinant or purified form. However, it is possible to study carbonyl reduction clearance pathways from simple experiments with commercially available reagents. This article provides an overview of carbonyl-reducing enzymes, including some kinetic data for substrates and inhibitors. In addition, an experimental strategy for the study of these enzymes in vitro is presented.


Subject(s)
Xenobiotics/metabolism , Animals , Cytosol/enzymology , Drug Interactions , Humans , Microsomes, Liver/enzymology , Mitochondria, Liver/enzymology , Oxidation-Reduction , Oxidoreductases/metabolism , Substrate Specificity
3.
Chem Biol Interact ; 147(2): 129-39, 2004 Mar 15.
Article in English | MEDLINE | ID: mdl-15013815

ABSTRACT

S-1360, a 1,3-diketone derivative, was the first HIV integrase inhibitor to enter human trials. Clinical data suggested involvement of non-cytochrome P450 clearance pathways, including reduction and glucuronidation. Reduction of S-1360 generates a key metabolite in humans, designated HP1, and constitutes a major clearance pathway. For characterization of subcellular location and cofactor dependence of HP1 formation, [(14)C]-S-1360 was incubated with commercially available pooled human liver fractions, including microsomes, cytosol, and mitochondria, followed by HPLC analysis with radiochemical detection. Incubations were performed in the presence and absence of the cofactors NADH or NADPH. Results showed that the enzyme system responsible for generation of HP1 in vitro is cytosolic and NADPH-dependent, implicating aldo-keto reductases (AKRs) and/or short-chain dehydrogenases/reductases (SDRs). A validated LC/MS/MS method was developed for investigating the reduction of S-1360 in detail. The reduction reaction exhibited sigmoidal kinetics with a K(m,app) of 2 microM and a Hill coefficient of 2. The ratio of V(max)/K(m) was approximately 1 ml/(min mg cytosolic protein). The S-1360 kinetic data were consistent with positive cooperativity and a single enzyme system. The relative contributions of AKRs and SDRs were examined through the use of chemical inhibitors. For these experiments, non-radiolabeled S-1360 was incubated with pooled human liver cytosol and NADPH in the presence of inhibitors, followed by quantitation of HP1 by LC/MS/MS. Quercetin and menadione produced approximately 30% inhibition at a concentration of 100 microM. Enzymes sensitive to these inhibitors include the carbonyl reductases (CRs), a subset of the SDR enzyme family predominantly located in the cytosol. Flufenamic acid and phenolphthalein were the most potent inhibitors, with > 67% inhibition at a concentration of 20 microM, implicating the AKR enzyme family. The cofactor dependence, subcellular location, and chemical inhibitor results implicated the aldo-keto reductase family of enzymes as the most likely pathway for generation of the major metabolite HP1 from S-1360.


Subject(s)
Alcohol Oxidoreductases/metabolism , Anti-HIV Agents/metabolism , Cytosol/enzymology , Enzyme Inhibitors/metabolism , HIV Integrase Inhibitors/metabolism , Liver/enzymology , Aldehyde Reductase , Aldo-Keto Reductases , Carbon Radioisotopes , Furans , Humans , Microsomes, Liver/enzymology , Mitochondria, Liver/enzymology , Oxidation-Reduction , Triazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...