Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585771

ABSTRACT

Electrochemical bandages (e-bandages) can be applied to biofilm-infected wounds to generate reactive oxygen species, such as hypochlorous acid (HOCl) or hydrogen peroxide (H 2 O 2 ). The e-bandage-generated HOCl or H 2 O 2 kills biofilms in vitro and in infected wounds on mice. The HOCl-generating e-bandage is more active against biofilms in vitro , although this distinction is less apparent in vivo . The H 2 O 2 -generating e-bandage, more than the HOCl-generating e-bandage, is associated with improved healing of infected wounds. A strategy in which H 2 O 2 and HOCl are generated alternately-for dual action-was explored. The goal was to develop a programmable multimodal wearable potentiostat (PMWP) that could be programmed to generate HOCl or H 2 O 2 , as needed. An ultralow-power microcontroller unit managed operation of the PMWP. The system was operated with a 260-mAh capacity coin battery and weighed 4.6 grams, making it suitable for small animal experiments or human use. The overall cost of a single wearable potentiostat was $6.50 (USD). The device was verified using established electrochemical systems and functioned comparably to a commercial potentiostat. To determine antimicrobial effectiveness, PMWP-controlled e-bandages were tested against clinical isolates of four prevalent chronic wound bacterial pathogens, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Acinetobacter baumannii , and Enterococcus faecium , and one fungal pathogen of emerging concern, Candida auris . PMWP-controlled e-bandages exhibited broad-spectrum activity against biofilms of all study isolates tested when programmed to deliver HOCl followed by H 2 O 2 . These results show that the PMWP operates effectively and is suitable for animal testing.

2.
J Am Chem Soc ; 142(10): 4833-4841, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32070102

ABSTRACT

Metal-organic frameworks are a class of porous compounds with potential applications in molecular sieving, gas sequestration, and catalysis. One family of MOFs, zeolitic imidizolate frameworks (ZIFs), is of particular interest for carbon dioxide sequestration. We have previously reported the heat capacity of the sodalite topology of the zinc 2-methylimidazolate framework (ZIF-8), and in this Article we present the first low-temperature heat capacity measurements of ZIF-8 with various amounts of sorbed CO2. Molar heat capacities from 1.8 to 300 K are presented for samples containing up to 0.99 mol of CO2 per mol of ZIF-8. Samples with at least 0.56 mol of CO2 per mol of ZIF-8 display a large, broad anomaly from 70 to 220 K with a shoulder on the low-temperature side, suggesting sorption-induced structural transitions. We attribute the broad anomaly partially to a gate-opening transition, with the remainder resulting from CO2 rearrangement and/or lattice expansion. The measurements also reveal a subtle anomaly from 0 to 70 K in all samples that does not exist in the sorbate-free material, which likely reflects new vibrational modes resulting from sorbate/ZIF-8 interactions. These results provide the first thermodynamic evidence of structural transitions induced by CO2 sorption in the ZIF-8 framework.

SELECTION OF CITATIONS
SEARCH DETAIL
...