Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Microsc ; 268(3): 305-312, 2017 12.
Article in English | MEDLINE | ID: mdl-29023712

ABSTRACT

In this work, we analyse the microstructure and local chemical composition of green-emitting Inx Ga1-x N/GaN quantum well (QW) heterostructures in correlation with their emission properties. Two samples of high structural quality grown by metalorganic vapour phase epitaxy (MOVPE) with a nominal composition of x = 0.15 and 0.18 indium are discussed. The local indium composition is quantitatively evaluated by comparing scanning transmission electron microscopy (STEM) images to simulations and the local indium concentration is extracted from intensity measurements. The calculations point out that the measured indium fluctuations may be correlated to the large width and intensity decrease of the PL emission peak.

2.
Ultramicroscopy ; 181: 173-177, 2017 10.
Article in English | MEDLINE | ID: mdl-28601013

ABSTRACT

This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate.


Subject(s)
Microscopy, Electron, Scanning Transmission , Microscopy, Energy-Filtering Transmission Electron , Computer Simulation , Electrons , Models, Theoretical , Oxides/chemistry , Quantum Theory , Spectroscopy, Electron Energy-Loss , Strontium/chemistry , Titanium/chemistry
3.
Ultramicroscopy ; 181: 178-190, 2017 10.
Article in English | MEDLINE | ID: mdl-28601779

ABSTRACT

Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO3-La0.67Sr0.33MnO3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording.

4.
Ultramicroscopy ; 181: 134-143, 2017 10.
Article in English | MEDLINE | ID: mdl-28551505

ABSTRACT

In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined.

5.
Phys Chem Chem Phys ; 19(13): 8880-8888, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28294235

ABSTRACT

Methanol as a green and renewable resource can be used to generate hydrogen by reforming, i.e., its catalytic oxidation with water. In combination with a fuel cell this hydrogen can be converted into electrical energy, a favorable concept, in particular for mobile applications. Its realization requires the development of novel types of structured catalysts, applicable in small scale reactor designs. Here, three different types of such catalysts were investigated for the steam reforming of methanol (SRM). Oxides such as TiO2 and CeO2 and mixtures thereof (Ce1Ti2Ox) were deposited inside a bulk nanoporous gold (npAu) material using wet chemical impregnation procedures. Transmission electron and scanning electron microscopy reveal oxide nanoparticles (1-2 nm in size) abundantly covering the strongly curved surface of the nanoporous gold host (ligaments and pores on the order of 40 nm in size). These catalysts were investigated in a laboratory scaled flow reactor. First conversion of methanol was detected at 200 °C. The measured turn over frequency at 300 °C of the CeOx/npAu catalyst was 0.06 s-1. Parallel investigation by in situ infrared spectroscopy (DRIFTS) reveals that the activation of water and the formation of OHads are the key to the activity/selectivity of the catalysts. While all catalysts generate sufficient OHads to prevent complete dehydrogenation of methanol to CO, only the most active catalysts (e.g., CeOx/npAu) show direct reaction with formic acid and its decomposition to CO2 and H2. The combination of flow reactor studies and in operando DRIFTS, thus, opens the door to further development of this type of catalyst.

6.
Ultramicroscopy ; 172: 75-81, 2017 01.
Article in English | MEDLINE | ID: mdl-27889636

ABSTRACT

Recently, imaging scanning transmission electron microscopy (ISTEM) has been proposed as a promising new technique combining the advantages of conventional TEM (CTEM) and STEM (Rosenauer et al., 2014 [1]). The ability to visualize light and heavy elements together makes it a particularly interesting new, spatially incoherent imaging mode. Here, we evaluate this technique in term of precision with which atomic column locations can be measured. By using statistical parameter estimation theory, we will show that these locations can be accurately measured with a precision in the picometer range. Furthermore, a quantitative comparison is made with HAADF STEM imaging to investigate the advantages of ISTEM.

7.
Ultramicroscopy ; 141: 22-31, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24704606

ABSTRACT

The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present.

8.
Sci Rep ; 4: 4633, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24717601

ABSTRACT

Surface enhanced Raman spectroscopy (SERS) has been established as a powerful tool to detect very low-concentration bio-molecules. One of the challenging problems is to have reliable and robust SERS substrate. Here, we report on a simple method to grow coherently embedded (endotaxial) silver nanostructures in silicon substrates, analyze their three-dimensional shape by scanning transmission electron microscopy tomography and demonstrate their use as a highly reproducible and stable substrate for SERS measurements. Bi-layers consisting of Ag and GeOx thin films were grown on native oxide covered silicon substrate using a physical vapor deposition method. Followed by annealing at 800°C under ambient conditions, this resulted in the formation of endotaxial Ag nanostructures of specific shape depending upon the substrate orientation. These structures are utilized for detection of Crystal Violet molecules of 5 × 10(-10) M concentrations. These are expected to be one of the highly robust, reusable and novel substrates for single molecule detection.

9.
Ultramicroscopy ; 139: 29-37, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24556533

ABSTRACT

Thin-film-based phase-plates are applied to enhance the contrast of weak-phase objects in transmission electron microscopy. In this work, metal-film-based phase-plates are considered to reduce contamination and electrostatic charging, which up to now limit the application of phase-plates fabricated from amorphous C-films. Their crystalline structure requires a model for the simulation of the effect of crystallinity on the phase-plate properties and the image formation process. The model established in this work is verified by experimental results obtained by the application of a textured nanocrystalline Au-film-based Hilbert phase-plate. Based on the model, it is shown that monocrystalline and textured nanocrystalline phase-plate microstructures of appropriate thickness and crystalline orientation can be a promising approach for phase-contrast transmission electron microscopy.


Subject(s)
Microscopy, Electron, Transmission/methods , Microscopy, Phase-Contrast/methods
10.
Micron ; 63: 57-63, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24462219

ABSTRACT

Quantitative structural and chemical information can be obtained from high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images when using statistical parameter estimation theory. In this approach, we assume an empirical parameterized imaging model for which the total scattered intensities of the atomic columns are estimated. These intensities can be related to the material structure or composition. Since the experimental probe profile is assumed to be known in the description of the imaging model, we will explore how the uncertainties in the probe profile affect the estimation of the total scattered intensities. Using multislice image simulations, we analyze this effect for Cs corrected and non-Cs corrected microscopes as a function of inaccuracies in cylindrically symmetric aberrations, such as defocus and spherical aberration of third and fifth order, and non-cylindrically symmetric aberrations, such as 2-fold and 3-fold astigmatism and coma.

11.
Ultramicroscopy ; 137: 12-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24270003

ABSTRACT

High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed.

12.
Ultramicroscopy ; 134: 23-33, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23759467

ABSTRACT

In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration.


Subject(s)
Electron Microscope Tomography/methods , Microscopy, Electron, Scanning Transmission/methods , Models, Statistical , Nanostructures/chemistry
13.
Micron ; 44: 254-60, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22854214

ABSTRACT

The Sb concentration in axial GaAs(1-x)Sb(x) inserts of otherwise pure GaAs nanowires has been investigated with quantitative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The Sb concentration was quantified by comparing the experimental image intensities normalized to the incident beam intensity with intensities simulated with a frozen lattice multislice approach. Including static atomic displacements in the simulations was found to be crucial for correct compositional analysis of GaAs(1-x)Sb(x). HAADF intensities of individual nanowires were analysed both across the nanowires, exploiting their hexagonal cross-sectional shape, and along the evenly thick central part of the nanowires. From the cross-sectional intensity profiles, a decrease in the Sb concentration towards the nanowire outer surfaces was found. The longitudinal intensity profiles revealed a gradual build-up of Sb in the insert. The decrease of the Sb concentration towards the upper interface was either gradual or abrupt, depending on the growth routine chosen. The compositional analysis with quantitative HAADF-STEM was verified by energy dispersive X-ray spectroscopy.

14.
Acta Crystallogr A ; 68(Pt 1): 68-76, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22186284

ABSTRACT

Modified atomic scattering amplitudes (MASAs), taking into account the redistribution of charge due to bonds, and the respective correction factors considering the effect of static atomic displacements were computed for the chemically sensitive 002 reflection for ternary III-V and II-VI semiconductors. MASAs were derived from computations within the density functional theory formalism. Binary eight-atom unit cells were strained according to each strain state s (thin, intermediate, thick and fully relaxed electron microscopic specimen) and each concentration (x = 0, …, 1 in 0.01 steps), where the lattice parameters for composition x in strain state s were calculated using continuum elasticity theory. The concentration dependence was derived by computing MASAs for each of these binary cells. Correction factors for static atomic displacements were computed from relaxed atom positions by generating 50 × 50 × 50 supercells using the lattice parameter of the eight-atom unit cells. Atoms were randomly distributed according to the required composition. Polynomials were fitted to the composition dependence of the MASAs and the correction factors for the different strain states. Fit parameters are given in the paper.


Subject(s)
Semiconductors , Sulfides/chemistry , Zinc Compounds/chemistry , Microscopy, Electron, Transmission , Quantum Theory , Software
15.
Nanotechnology ; 22(26): 265202, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21576780

ABSTRACT

We report on the fabrication of a light-emitting diode based on GaN nanorods containing InGaN quantum wells. The unique system consists of tilted N-polar nanorods of high crystalline quality. Photoluminescence, electroluminescence, and spatially resolved cathodoluminescence investigations consistently show quantum well emission around 2.6 eV. Scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy measurements reveal a truncated shape of the quantum wells with In contents of (15 ± 5)%.

16.
J Phys Condens Matter ; 23(13): 135002, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21403241

ABSTRACT

We report the growth of Ge nanostructures and microstructures on ultraclean, high vicinal angle silicon surfaces and show that self-assembled growth at optimum thickness of the overlayer leads to interesting shape transformations, namely from nanoparticle to trapezoidal structures, at higher thickness values. Thin films of Ge of varying thickness from 3 to 12 ML were grown under ultrahigh vacuum conditions on a Si(5 5 12) substrate while keeping the substrate at a temperature of 600 °C. The substrate heating was achieved by two methods: (i) by heating a filament under the substrate (radiative heating, RH) and (ii) by passing direct current through the samples in three directions (perpendicular, parallel and at 45° to the (110) direction of the substrate). We find irregular, more spherical-like island structures under RH conditions. The shape transformations have been found under DC heating conditions and for Ge deposition more than 8 ML thick. The longer sides of the trapezoid structures are found to be along (110) irrespective of the DC current direction. We also show the absence of such a shape transformation in the case of Ge deposition on Si(111) substrates. Scanning transmission electron microscopy measurements suggested the mixing of Ge and Si. This has been confirmed with a quantitative estimation of the intermixing using Rutherford backscattering spectrometry (RBS) measurements. The role of DC heating in the formation of aligned structures is discussed. Although the RBS simulations show the presence of a possible SiO(x) layer, under the experimental conditions of the present study, the oxide layer would not play a role in determining the formation of the various structures that were reported here.


Subject(s)
Germanium/chemistry , Heating/instrumentation , Nanostructures/ultrastructure , Silicon/chemistry , Hot Temperature , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Nanotechnology/instrumentation , Particle Size , Surface Properties
17.
Ultramicroscopy ; 111(2): 159-68, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21185461

ABSTRACT

Transmission electron microscopy phase-contrast images taken by amorphous carbon film-based phase plates are affected by the scattering of electrons within the carbon film causing a modification of the image-wave function. Moreover, image artefacts are produced by non-centrosymmetric phase plate designs such as the Hilbert-phase plate. Various methods are presented to correct phase-contrast images with respect to the scattering of electrons and image artefacts induced by phase plates. The proposed techniques are not restricted to weak-phase objects and linear image formation. Phase-contrast images corrected by the presented methods correspond to those taken by an ideal centrosymmetric, matter-free phase plate and are suitable for object-wave reconstruction.


Subject(s)
Electrons , Image Processing, Computer-Assisted/methods , Microscopy, Electron, Transmission/methods , Models, Theoretical , Carbon , Microscopy, Phase-Contrast/methods
18.
Nanotechnology ; 22(2): 025603, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21139192

ABSTRACT

GaN nanorods were grown on r-plane sapphire substrates by a two-step approach. Nucleation sites for the nanorods were provided by the formation of AlN islands during nitridation in a metal organic vapor phase system. These islands are a-plane oriented as expected for nitride growth on r-plane sapphire. The nanorods themselves were grown by plasma assisted molecular beam epitaxy. The nanorods show an inclination towards the surface normal of 28.3° and are highly ordered. Studies with high resolution x-ray diffraction polar plots reveal the epitaxial relationship between the substrate and nanorods as a c-direction growth on inclined m-plane facets of the nitridated islands. The determined lattice constants show nanorods which are strain free. The growth direction of the nanorods has been confirmed in a transmission electron microscope by convergent beam electron diffraction patterns to be in the N-polar [Formula: see text] direction.

19.
Ultramicroscopy ; 110(7): 807-14, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20189718

ABSTRACT

A method is described for the reconstruction of the amplitude and phase of the object exit wave function by phase-plate transmission electron microscopy. The proposed method can be considered as in-line holography and requires three images, taken with different phase shifts between undiffracted and diffracted electrons induced by a suitable phase-shifting device. The proposed method is applicable for arbitrary object exit wave functions and non-linear image formation. Verification of the method is performed for examples of a simulated crystalline object wave function and a wave function acquired with off-axis holography. The impact of noise on the reconstruction of the wave function is investigated.

20.
Acta Physiol (Oxf) ; 199(3): 327-38, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20146722

ABSTRACT

AIM: Salt reabsorption across the apical membrane of cells in the thick ascending limb (TAL) of Henle is primarily mediated by the bumetanide-sensitive Na(+)/K(+)/2Cl(-) cotransporter NKCC2. Three full-length splice variants of NKCC2 (NKCC2B, NKCC2A and NKCC2F) have been described. The NKCC2 isoforms have specific localizations and transport characteristics, as assessed for rabbit, rat and mouse. In the present study, we aimed to address the localization and transport characteristics of the human NKCC2 isoforms. METHODS: RT-PCR, in situ hybridization and uptake studies in Xenopus oocytes were performed to characterize human NKCC2 isoforms. RESULTS: All three classical NKCC2 isoforms were detected in the human kidney; in addition, we found splice variants with tandem duplicates of the variable exon 4. Contrary to rodents, in which NKCC2F is the most abundant NKCC2 isoform, NKCC2A was the dominant isoform in humans; similarly, isoform-specific in situ hybridization showed high expression levels of human NKCC2A along the TAL. Compared to NKCC2B and NKCC2F, human NKCC2A had the lowest Cl(-) affinity as determined by (86)Rb(+) uptake studies in oocytes. All NKCC2 isoforms were more efficiently inhibited by bumetanide than by furosemide. A sequence analysis of the amino acids encoded by exon 4 variants revealed high similarities between human and rodent NKCC2 isoforms, suggesting that differences in ion transport characteristics between species may be related to sequence variations outside the highly conserved sequence encoded by exon 4. CONCLUSION: The human NKCC2 is an example of how differential splicing forms the basis for a diversification of transporter protein function.


Subject(s)
Kidney/anatomy & histology , Kidney/metabolism , Sodium-Potassium-Chloride Symporters/metabolism , Amino Acid Sequence , Animals , Biological Transport, Active , Chlorine , Diuretics/pharmacology , Exons/genetics , Humans , Immunohistochemistry , In Situ Hybridization , Isomerism , Isotopes , Mice , Molecular Sequence Data , Oocytes/metabolism , Rabbits , Rats , Reverse Transcriptase Polymerase Chain Reaction , Rubidium Radioisotopes , Sodium-Potassium-Chloride Symporters/genetics , Solute Carrier Family 12, Member 1 , Transcription, Genetic , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...