Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 32: 190-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26790371

ABSTRACT

The placenta and trophoblasts express several B-esterases. This family includes acethylcholinesterase (AChE), carboxylesterase (CES) and butyrylcholinesterase (BChE), which are important targets of organophosphate insecticide (OP) toxicity. To better understand OP effects on trophoblasts, B-esterase basal activity and kinetic behavior were studied in JEG-3 choriocarcinoma cell cultures. Effects of the OP azinphos-methyl (Am) and chlorpyrifos (Cp) on cellular enzyme activity were also evaluated. JEG-3 cells showed measurable activity levels of AChE and CES, while BChE was undetected. Recorded Km for AChE and CES were 0.33 and 0.26 mM respectively. Native gel electrophoresis and RT-PCR analysis demonstrated CES1 and CES2 isoform expression. Cells exposed for 4 and 24 h to the OP Am or Cp, showed a differential CES and AChE inhibition profiles. Am inhibited CES and AChE at 4 h treatment while Cp showed the highest inhibition profile at 24 h. Interestingly, both insecticides differentially affected CES1 and CES2 activities. Results demonstrated that JEG-3 trophoblasts express AChE, CES1 and CES2. B-esterase enzymes were inhibited by in vitro OP exposure, indicating that JEG-3 cells metabolization capabilities include phase I enzymes, able to bioactivate OP. In addition, since CES enzymes are important for medicinal drug activation/deactivation, OP exposure may interfere with trophoblast CES metabolization, probably being relevant in a co-exposure scenario during pregnancy.


Subject(s)
Azinphosmethyl/toxicity , Carboxylesterase/metabolism , Chlorpyrifos/toxicity , Insecticides/toxicity , Trophoblasts/drug effects , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Carboxylesterase/genetics , Cell Line, Tumor , Cholinesterase Inhibitors/pharmacology , Humans , RNA, Messenger/metabolism , Trophoblasts/enzymology
2.
Environ Toxicol Chem ; 31(10): 2311-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22821413

ABSTRACT

The authors evaluated biomarker responses in caged larvae of the amphibian Rhinella arenarum in water channels during fruit production season and compared them with those elicited by a transient exposure to azinphos methyl (AzM) (0.02-2 mg/L; 4 h), the main pesticide applied in the Alto Valle region, Patagonia, Argentina, taking into account the maximum environmental concentration detected in superficial water (22.5 µg/L). The traditional biomarkers of organophosphate exposure, acetylcholinesterase (AChE) and carboxylesterase, were inhibited in tadpoles after one week of exposure in channels potentially receiving pesticide drift, whereas the antioxidant glutathione (GSH) and the detoxifying activity of GSH S-transferase (GST) were induced. In a two-week monitoring study, AChE activity was induced in larvae exposed at the agricultural site, and carboxylesterase showed an inhibition followed by return to control values, suggesting an exposure-recovery episode. Antioxidant glutathione levels were first depleted and then surpassed control levels, whereas GST activity was continuously induced. These responses were mimicked in the laboratory by 2 mg/L AzM-pulse exposure, which notably exceeds the expected environmental concentrations. The results draw attention to the complexity of responses after pesticide exposure, strongly depending on exposure time-concentration and recovery periods, among other possible factors, and support the necessity of the integrated use of biomarkers to assess exposure episodes in agricultural areas.


Subject(s)
Agriculture , Azinphosmethyl/pharmacology , Biomarkers/analysis , Bufo arenarum/metabolism , Pesticides/pharmacology , Water Pollutants, Chemical/pharmacology , Acetylcholinesterase/analysis , Agricultural Irrigation , Animals , Argentina , Carboxylesterase/analysis , Environmental Exposure , Environmental Monitoring , Fruit , Glutathione/analysis , Glutathione Transferase/analysis , Larva/drug effects , Seasons
3.
J Biochem Mol Toxicol ; 22(4): 259-67, 2008.
Article in English | MEDLINE | ID: mdl-18752312

ABSTRACT

Amphibians may be critically challenged by aquatic contaminants during their embryonic development. Many classes of compounds, including organophosphorus pesticides, are able to cause oxidative stress that affects the delicate cellular redox balance regulating tissue modeling. We determined the progression of antioxidant defenses during the embryonic development of the South American common toad, Bufo arenarum. Superoxide dismutase (SOD) and catalase (CAT) activities were high in the unfertilized eggs, and remained constant during the first stages of development. SOD showed a significant increase when the gills were completely active and opercular folds began to form. Reductase (GR) activity was low in the oocytes and increased significantly when gills and mouth were entirely developed and the embryos presented a higher exposure to pro-oxidant conditions suggesting an environmental control. Reduced glutathione (GSH) content was also initially low, and rose continuously pointing out an increasing participation of GSH-related enzymes in the control of oxidative stress. GSH peroxidases and GSH-S-transferases showed relatively high and constant activities, probably related to lipid peroxide control. B. arenarum embryos have plenty of yolk platelets containing lipids, which provide the energy and are actively transferred to the newly synthesized membranes during the early embryonic development. Exposure to the pro-oxidant pesticide malathion during 48 h did not significantly affect the activity of antioxidant enzymes in early embryos, but decreased the activities of CAT, GR, and the pool of GSH in larvae. Previous work indicated that lipid peroxide levels were kept low in malathion-exposed larvae, thus we conclude that oxidative stress is overcome by the antioxidant defenses. The increase in the antioxidant metabolism observed in the posthatching phase of development of B. arenarum embryo, thus constitutes a defense against natural and human-generated pro-oxidants present in the aquatic environment.


Subject(s)
Antioxidants/metabolism , Bufo arenarum/embryology , Bufo arenarum/metabolism , Insecticides/toxicity , Malathion/toxicity , Water Pollutants, Chemical/toxicity , Animals , Argentina , Bufo arenarum/growth & development , Catalase/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Larva/drug effects , Larva/growth & development , Larva/metabolism , Superoxide Dismutase/metabolism
4.
Biomarkers ; 8(3-4): 167-86, 2003.
Article in English | MEDLINE | ID: mdl-12944171

ABSTRACT

Amphibians are good bioindicators of environmental pollution due to their susceptibility to chemicals during their freshwater cycles. The effects of environmental pollution, together with changes in human activity and climate, have contributed to the reduction in the amphibian population over recent decades. However, toxicological research on amphibians has been rather scarce compared with that on other vertebrates. In this article we review the biochemical alterations underlying xenobiotic action and/or the detoxifying responses described for anuran species, with the aim of establishing possible biomarkers of effect. During the embryonic development of anurans, morphological and behavioural alterations are the effects most frequently cited in connection with chemical exposures. However, such biomarkers have a low sensitivity and are unspecific compared with biochemical alterations. Some primary pesticide targets, in particular cholinesterases for organophosphates and carbamates, have been evaluated. Esterases change seasonally and with the stage of development, and their sensitivity to anticholinesterase agents varies between species. Thus their use as biomarkers in anurans must be carefully analysed. Enzymes and endogenous compounds related to oxidative metabolism may also be used as biomarkers of effect. Glutathione pool, glutathione-S-transferases and metallothioneins respond in different ways to pesticides and heavy metals in anuran embryos and tadpoles. Mixed-function oxidases, in turn, are less developed in amphibians, and show a reduced induction in response to pesticide exposures. Endogenous polyamine levels are also proposed as good age-related biomarkers of damage. Finally, molecular biomarkers related to receptor binding, signal transduction and genetic response have gained increasing relevance, as they have been implicated in the fertilisation process and the earliest events in anuran development. The identification of transcription factors associated with the exposure of amphibians to xenobiotics as well as other alterations in hormone signalling appears highly promising. However, these techniques are likely to complement other methods. In conclusion, the use of several biomarkers with multiple endpoints is needed to link exposure to response and to provide better predictive tools for the environmental protection of endangered anuran species.


Subject(s)
Anura , Ecosystem , Environmental Monitoring/methods , Animals , Anura/embryology , Anura/metabolism , Anura/physiology , Biomarkers , Water Pollution/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...