Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 2931, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351184

ABSTRACT

Fin whale (Balaenoptera physalus) song can follow a highly consistent pattern, and regional differences in song patterns can be a valuable indicator of subpopulation identity and distribution. In the Northwest Atlantic, endangered fin whales are currently managed as a single stock despite previous identification of different regional song patterns, which indicates potential subpopulation structuring and vulnerability to anthropogenic disturbance if not managed accordingly. Here we document fin whale song in the New York Bight (NYB) from 2017 to 2020 using passive acoustic data to identify monthly and yearly trends in song patterns and to explore potential subpopulation structuring. The predominant song pattern observed was highly consistent with the pattern documented almost a decade prior in the NYB, with short inter-note intervals (INI) from fall-winter and long-INIs in the spring. However, in one song year the majority of songs were composed of long-INIs. This change in song pattern could be due to a shift in fin whale behavior or possibly multiple fin whale subpopulations using the NYB. Fin whales in the NYB may be particularly vulnerable to disturbance given the increasing anthropogenic pressures in this region, and further research into subpopulation structuring is needed to ensure adequate management of these endangered whales.


Subject(s)
Fin Whale , Animals , New York , Vocalization, Animal , Whales , Seasons
2.
J Hered ; 114(6): 587-597, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37578073

ABSTRACT

The 20th century commercial whaling industry severely reduced populations of great whales throughout the Southern Hemisphere. The effect of this exploitation on genetic diversity and population structure remains largely undescribed. Here, we compare pre- and post-whaling diversity of mitochondrial DNA (mtDNA) control region sequences for 3 great whales in the South Atlantic, such as the blue, humpback, and fin whale. Pre-whaling diversity is described from mtDNA extracted from bones collected near abandoned whaling stations, primarily from the South Atlantic island of South Georgia. These bones are known to represent the first stage of 20th century whaling and thus pre-whaling diversity of these populations. Post-whaling diversity is described from previously published studies reporting large-scale sampling of living whales in the Southern Hemisphere. Despite relatively high levels of surviving genetic diversity in the post-whaling populations, we found evidence of a probable loss of mtDNA lineages in all 3 species. This is evidenced by the detection of a large number of haplotypes found in the pre-whaling samples that are not present in the post-whaling samples. A rarefaction analysis further supports a loss of haplotypes in the South Atlantic humpback and Antarctic blue whale populations. The bones from former whaling stations in the South Atlantic represent a remarkable molecular archive for further investigation of the decline and ongoing recovery in the great whales of the Southern Hemisphere.


Subject(s)
DNA, Mitochondrial , Whales , Animals , Whales/genetics , DNA, Mitochondrial/genetics , Antarctic Regions
3.
Ecol Evol ; 13(7): e10226, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37441097

ABSTRACT

Forage fishes are a critical food web link in marine ecosystems, aggregating in a hierarchical patch structure over multiple spatial and temporal scales. Surface-level forage fish aggregations (FFAs) represent a concentrated source of prey available to surface- and shallow-foraging marine predators. Existing survey and analysis methods are often imperfect for studying forage fishes at scales appropriate to foraging predators, making it difficult to quantify predator-prey interactions. In many cases, general distributions of forage fish species are known; however, these may not represent surface-level prey availability to predators. Likewise, we lack an understanding of the oceanographic drivers of spatial patterns of prey aggregation and availability or forage fish community patterns. Specifically, we applied Bayesian joint species distribution models to bottom trawl survey data to assess species- and community-level forage fish distribution patterns across the US Northeast Continental Shelf (NES) ecosystem. Aerial digital surveys gathered data on surface FFAs at two project sites within the NES, which we used in a spatially explicit hierarchical Bayesian model to estimate the abundance and size of surface FFAs. We used these models to examine the oceanographic drivers of forage fish distributions and aggregations. Our results suggest that, in the NES, regions of high community species richness are spatially consistent with regions of high surface FFA abundance. Bathymetric depth drove both patterns, while subsurface features, such as mixed layer depth, primarily influenced aggregation behavior and surface features, such as sea surface temperature, sub-mesoscale eddies, and fronts influenced forage fish diversity. In combination, these models help quantify the availability of forage fishes to marine predators and represent a novel application of spatial models to aerial digital survey data.

4.
J Acoust Soc Am ; 150(3): 1883, 2021 09.
Article in English | MEDLINE | ID: mdl-34598647

ABSTRACT

Rapid changes in the Arctic from shifting climate and human use patterns are affecting previously reported distributions and movements of marine mammals. The underwater soundscape, a key component of marine mammal habitats, is also changing. This study integrates acoustic data, collected at a site in the northern Bering Sea, with information on sound sources to quantify their occurrence throughout the year and identify deviations in conditions and dominant soundscape components. Predictive models are applied to explain variation in sound levels and to compare the relative contributions of various soundscape components. Levels across all octave bands were influenced most strongly by the variation in abiotic environment across seasons. The presence of commercial ships did not have a discernible effect on sound levels at this location and period of time. The occurrence of sources was compared to a second site, where we documented how higher levels of shipping changed that soundscape. This study demonstrated the value of acoustic monitoring to characterize the dominant acoustic features in a soundscape and the importance of preserving soundscapes based on dominant features rather than level of sound. Using a soundscape approach has relevance for protecting marine mammals and for the food security of Alaska Native communities that depend upon them.


Subject(s)
Noise , Sound , Acoustics , Animals , Ecosystem , Humans , Ships
5.
Mar Pollut Bull ; 157: 111283, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32475816

ABSTRACT

We measured spatial and temporal patterns of ambient noise in dynamic, relatively pristine Arctic marine habitats and evaluate the contributions of environmental and human noise sources. Long-term acoustic recorders were deployed around St. Lawrence Island and the Bering Strait region within key feeding and migratory corridors for protected species that are inherently important to Native Alaskan cultures. Over 3000 h of data from 14 recorders at nine sites were obtained from October 2014 to June 2017. Spatial and temporal ambient noise patterns were quantified with percentile statistics in 1/3rd-octave bands (0.02-8 kHz). Ice presence strongly influenced ambient noise by influencing the physical environment and presence of marine mammals. High variability in noise was observed within and between sites, largely as a function of ice presence and associated factors. Acute contributions of biological and anthropogenic sources to local ambient noise are compared to monthly averages, demonstrating how they influence Arctic soundscapes.


Subject(s)
Acoustics , Noise , Animals , Arctic Regions , Humans , Islands , Seasons
6.
J Hered ; 111(7): 652-660, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33475708

ABSTRACT

Speciation is a fundamental process in evolution and crucial to the formation of biodiversity. It is a continuous and complex process, which can involve multiple interacting barriers leading to heterogeneous genomic landscapes with various peaks of divergence among populations. In this study, we used a population genomics approach to gain insights on the speciation process and to understand the population structure within the genus Sousa across its distribution in the Indo-Pacific region. We found 5 distinct clusters, corresponding to S. plumbea along the eastern African coast and the Arabian Sea, the Bangladesh population, S. chinensis off Thailand and S. sahulensis off Australian waters. We suggest that the high level of differentiation found, even across geographically close areas, is likely determined by different oceanographic features such as sea surface temperature and primary productivity.


Subject(s)
Dolphins/genetics , Genetics, Population , Genomics , Animals , Biodiversity , Cluster Analysis , Ecosystem , Genetic Variation , Geography , Indian Ocean , Pacific Ocean
7.
R Soc Open Sci ; 5(11): 172305, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30564382

ABSTRACT

In migratory marine species, investigating population connectivity and structure can be challenging given barriers to dispersal are less evident and multiple factors may influence individual movement patterns. Male humpback whales sing a song display that can provide insights into contemporary connectivity patterns, as there can be a cultural exchange of a single, population-wide shared song type with neighbouring populations in acoustic contact. Here, we investigated song exchange between populations located on the east and west coasts of Africa using 5 years of concurrent data (2001-2005). Songs were qualitatively and quantitatively transcribed by measuring acoustic features of all song units and then compared using both Dice's similarity index and the Levenshtein distance similarity index (LSI) to quantitatively calculate song similarity. Song similarity varied among individuals and potentially between populations depending on the year (Dice: 36-100%, LSI: 21-100%), suggesting varying levels of population connectivity and/or interchange among years. The high degree of song sharing indicated in this study further supports genetic studies that demonstrate interchange between these two populations and reinforces the emerging picture of broad-scale connectivity in Southern Hemisphere populations. Further research incorporating additional populations and years would be invaluable for better understanding of fine-scale, song interchange patterns between Southern Hemisphere male humpback whales.

8.
Mol Ecol ; 26(4): 977-994, 2017 02.
Article in English | MEDLINE | ID: mdl-27914203

ABSTRACT

Elucidating patterns of population structure for species with complex life histories, and disentangling the processes driving such patterns, remains a significant analytical challenge. Humpback whale (Megaptera novaeangliae) populations display complex genetic structures that have not been fully resolved at all spatial scales. We generated a data set of nuclear markers for 3575 samples spanning the seven breeding stocks and substocks found in the South Atlantic and western and northern Indian Oceans. For the total sample, and males and females separately, we assessed genetic diversity, tested for genetic differentiation between putative populations and isolation by distance, estimated the number of genetic clusters without a priori population information and estimated rates of gene flow using maximum-likelihood and Bayesian approaches. At the ocean basin scale, structure is governed by geographical distance (IBD P < 0.05) and female fidelity to breeding areas, in line with current understanding of the drivers of broadscale population structure. Consistent with previous studies, the Arabian Sea breeding stock was highly genetically differentiated (FST 0.034-0.161; P < 0.01 for all comparisons). However, the breeding stock boundary between west South Africa and east Africa was more porous than expected based on genetic differentiation, cluster and geneflow analyses. Instances of male fidelity to breeding areas and relatively high rates of dispersal for females were also observed between the three substocks in the western Indian Ocean. The relationships between demographic units and current management boundaries may have ramifications for assessments of the status and continued protections of populations still in recovery from commercial whaling.


Subject(s)
Gastrointestinal Microbiome , Humpback Whale , Lizards , Africa, Eastern , Africa, Western , Animals , Bayes Theorem , Female , Genetic Structures , Indian Ocean , Male , South Africa
9.
R Soc Open Sci ; 3(12): 160616, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28083104

ABSTRACT

Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of 'transiting' (consistent/directional) versus 'localized' (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry < 200 m and in adjacent areas), females showed localized behaviour in deep waters (191 ± 20 m) and at large distances (14 ± 0.6 km) from shore, suggesting that their breeding habitat extends beyond the shallowest waters available close to the coastline. Males' active swimming speed decreased in shallow waters, but environmental parameters did not influence their likelihood to exhibit localized movements, which was probably dominated by social factors instead. In oceanic habitats, both males and females showed localized behaviours in shallow waters and favoured high chlorophyll-a concentrations. Active swimming speed accounts for a large proportion of observed movement speed; however, breeding humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level.

10.
Mol Ecol ; 24(7): 1510-22, 2015 04.
Article in English | MEDLINE | ID: mdl-25753251

ABSTRACT

Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range.


Subject(s)
Climate Change , Genetic Variation , Whales/genetics , Animals , Arctic Regions , Atlantic Ocean , DNA, Mitochondrial/genetics , Ecosystem , Fossils , Haplotypes , Models, Biological , Molecular Sequence Data , Phylogeography , Population Dynamics , Sequence Analysis, DNA
11.
PLoS One ; 9(12): e114162, 2014.
Article in English | MEDLINE | ID: mdl-25470144

ABSTRACT

A clear understanding of population structure is essential for assessing conservation status and implementing management strategies. A small, non-migratory population of humpback whales in the Arabian Sea is classified as "Endangered" on the IUCN Red List of Threatened Species, an assessment constrained by a lack of data, including limited understanding of its relationship to other populations. We analysed 11 microsatellite markers and mitochondrial DNA sequences extracted from 67 Arabian Sea humpback whale tissue samples and compared them to equivalent datasets from the Southern Hemisphere and North Pacific. Results show that the Arabian Sea population is highly distinct; estimates of gene flow and divergence times suggest a Southern Indian Ocean origin but indicate that it has been isolated for approximately 70,000 years, remarkable for a species that is typically highly migratory. Genetic diversity values are significantly lower than those obtained for Southern Hemisphere populations and signatures of ancient and recent genetic bottlenecks were identified. Our findings suggest this is the world's most isolated humpback whale population, which, when combined with low population abundance estimates and anthropogenic threats, raises concern for its survival. We recommend an amendment of the status of the population to "Critically Endangered" on the IUCN Red List.


Subject(s)
Conservation of Natural Resources , Endangered Species , Humpback Whale/genetics , Animals , Bayes Theorem , DNA, Mitochondrial/analysis , Genetic Variation , Haplotypes , Humpback Whale/classification , Humpback Whale/metabolism , Indian Ocean , Microsatellite Repeats , Phylogeny , Polymerase Chain Reaction
12.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24850919

ABSTRACT

Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550-1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies.


Subject(s)
Actins/genetics , Genetic Variation , Humpback Whale/genetics , Animals , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Haplotypes , Molecular Sequence Data , Oceans and Seas , Phylogeny , Sequence Analysis, DNA
13.
Ecol Evol ; 4(8): 1398-412, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24834336

ABSTRACT

It is generally assumed that species with low population sizes have lower genetic diversities than larger populations and vice versa. However, this would not be the case for long-lived species with long generation times, and which populations have declined due to anthropogenic effects, such as the blue whale (Balaenoptera musculus). This species was intensively decimated globally to near extinction during the 20th century. Along the Chilean coast, it is estimated that at least 4288 blue whales were hunted from an apparently pre-exploitation population size (k) of a maximum of 6200 individuals (Southeastern Pacific). Thus, here, we describe the mtDNA (control region) and nDNA (microsatellites) diversities of the Chilean blue whale aggregation site in order to verify the expectation of low genetic diversity in small populations. We then compare our findings with other blue whale aggregations in the Southern Hemisphere. Interestingly, although the estimated population size is small compared with the pre-whaling era, there is still considerable genetic diversity, even after the population crash, both in mitochondrial (N = 46) and nuclear (N = 52) markers (Hd = 0.890 and Ho = 0.692, respectively). Our results suggest that this diversity could be a consequence of the long generation times and the relatively short period of time elapsed since the end of whaling, which has been observed in other heavily-exploited whale populations. The genetic variability of blue whales on their southern Chile feeding grounds was similar to that found in other Southern Hemisphere blue whale feeding grounds. Our phylogenetic analysis of mtDNA haplotypes does not show extensive differentiation of populations among Southern Hemisphere blue whale feeding grounds. The present study suggests that although levels of genetic diversity are frequently used as estimators of population health, these parameters depend on the biology of the species and should be taken into account in a monitoring framework study to obtain a more complete picture of the conservation status of a population.

14.
PLoS One ; 9(3): e86464, 2014.
Article in English | MEDLINE | ID: mdl-24618836

ABSTRACT

Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations.


Subject(s)
Data Collection , Humpback Whale , Noise , Vocalization, Animal , Acoustics , Angola , Animals , Female , Male , Models, Statistical , Seasons
15.
Conserv Biol ; 28(2): 604-15, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24495092

ABSTRACT

Humpback whales (Megaptera novaeangliae) are managed by the International Whaling Commission as 7 primary populations that breed in the tropics and migrate to 6 feeding areas around the Antarctic. There is little information on individual movements within breeding areas or migratory connections to feeding grounds. We sought to better understand humpback whale habitat use and movements at breeding areas off West Africa, and during the annual migration to Antarctic feeding areas. We also assessed potential overlap between whale habitat and anthropogenic activities. We used Argos satellite-monitored radio tags to collect data on 13 animals off Gabon, a primary humpback whale breeding area. We quantified habitat use for 3 cohorts of whales and used a state-space model to determine transitions in the movement behavior of individuals. We developed a spatial metric of overlap between whale habitat and models of cumulative human activities, including oil platforms, toxicants, and shipping. We detected strong heterogeneity in movement behavior over time that is consistent with previous genetic evidence of multiple populations in the region. Breeding areas for humpback whales in the eastern Atlantic were extensive and extended north of Gabon late in the breeding season. We also observed, for the first time, direct migration between West Africa and sub-Antarctic feeding areas. Potential overlap of whale habitat with human activities was the highest in exclusive economic zones close to shore, particularly in areas used by both individual whales and the hydrocarbon industry. Whales potentially overlapped with different activities during each stage of their migration, which makes it difficult to implement mitigation measures over their entire range. Our results and existing population-level data may inform delimitation of populations and actions to mitigate potential threats to whales as part of local, regional, and international management of highly migratory marine species.


Subject(s)
Animal Migration , Conservation of Natural Resources , Humpback Whale/physiology , Animals , Atlantic Ocean , Feeding Behavior , Female , Fisheries , Gabon , Male , Remote Sensing Technology
17.
PLoS One ; 9(1): e83645, 2014.
Article in English | MEDLINE | ID: mdl-24421898

ABSTRACT

Natural hybridization may result in the exchange of genetic material between divergent lineages and even the formation of new taxa. Many of the Neo-Darwinian architects argued that, particularly for animal clades, natural hybridization was maladaptive. Recent evidence, however, has falsified this hypothesis, instead indicating that this process may lead to increased biodiversity through the formation of new species. Although such cases of hybrid speciation have been described in plants, fish and insects, they are considered exceptionally rare in mammals. Here we present evidence for a marine mammal, Stenella clymene, arising through natural hybridization. We found phylogenetic discordance between mitochondrial and nuclear markers, which, coupled with a pattern of transgressive segregation seen in the morphometric variation of some characters, support a case of hybrid speciation. S. clymene is currently genetically differentiated from its putative parental species, Stenella coerueloalba and Stenella longisrostris, although low levels of introgressive hybridization may be occurring. Although non-reticulate forms of evolution, such as incomplete lineage sorting, could explain our genetic results, we consider that the genetic and morphological evidence taken together argue more convincingly towards a case of hybrid speciation. We anticipate that our study will bring attention to this important aspect of reticulate evolution in non-model mammal species. The study of speciation through hybridization is an excellent opportunity to understand the mechanisms leading to speciation in the context of gene flow.


Subject(s)
Aquatic Organisms/genetics , Dolphins/genetics , Genetic Speciation , Hybridization, Genetic , Animals , Bayes Theorem , Cell Nucleus/genetics , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Florida , Genetic Loci/genetics , Genetic Variation , Haplotypes/genetics , Phylogeny , Skull/anatomy & histology , Species Specificity
18.
Mol Ecol ; 22(23): 5936-48, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24268046

ABSTRACT

The conservation of humpback dolphins, distributed in coastal waters of the Indo-West Pacific and eastern Atlantic Oceans, has been hindered by a lack of understanding about the number of species in the genus (Sousa) and their population structure. To address this issue, we present a combined analysis of genetic and morphologic data collected from beach-cast, remote-biopsied and museum specimens from throughout the known Sousa range. We extracted genetic sequence data from 235 samples from extant populations and explored the mitochondrial control region and four nuclear introns through phylogenetic, population-level and population aggregation frameworks. In addition, 180 cranial specimens from the same geographical regions allowed comparisons of 24 morphological characters through multivariate analyses. The genetic and morphological data showed significant and concordant patterns of geographical segregation, which are typical for the kind of demographic isolation displayed by species units, across the Sousa genus distribution range. Based on our combined genetic and morphological analyses, there is convincing evidence for at least four species within the genus (S. teuszii in the Atlantic off West Africa, S. plumbea in the central and western Indian Ocean, S. chinensis in the eastern Indian and West Pacific Oceans, and a new as-yet-unnamed species off northern Australia).


Subject(s)
Biological Evolution , Dolphins/classification , Phylogeny , Animals , Australia , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Dolphins/anatomy & histology , Dolphins/genetics , Haplotypes , Introns , Multivariate Analysis , Sequence Analysis, DNA
19.
J Hered ; 104(6): 755-64, 2013.
Article in English | MEDLINE | ID: mdl-24081988

ABSTRACT

Accurate identification of units for conservation is particularly challenging for marine species as obvious barriers to gene flow are generally lacking. Bryde's whales (Balaenoptera spp.) are subject to multiple human-mediated stressors, including fisheries bycatch, ship strikes, and scientific whaling by Japan. For effective management, a clear understanding of how populations of each Bryde's whale species/subspecies are genetically structured across their range is required. We conducted a population-level analysis of mtDNA control region sequences with 56 new samples from Oman, Maldives, and Bangladesh, plus published sequences from off Java and the Northwest Pacific. Nine diagnostic characters in the mitochondrial control region and a maximum parsimony phylogenetic analysis identified 2 genetically recognized subspecies of Bryde's whale: the larger, offshore form, Balaenoptera edeni brydei, and the smaller, coastal form, Balaenoptera edeni edeni. Genetic diversity and differentiation indices, combined with a reconstructed maximum parsimony haplotype network, indicate strong differences in the genetic diversity and population structure within each subspecies. Discrete population units are identified for B. e. brydei in the Maldives, Java, and the Northwest Pacific and for B. e. edeni between the Northern Indian Ocean (Oman and Bangladesh) and the coastal waters of Japan.


Subject(s)
Balaenoptera/genetics , Animals , Balaenoptera/classification , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Haplotypes , Indian Ocean , Oceanography , Pacific Ocean , Phylogeny
20.
Ecol Evol ; 2(11): 2895-911, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23170222

ABSTRACT

Sea ice is believed to be a major factor shaping gene flow for polar marine organisms, but it remains unclear to what extent it represents a true barrier to dispersal for arctic cetaceans. Bowhead whales are highly adapted to polar sea ice and were targeted by commercial whalers throughout Arctic and subarctic seas for at least four centuries, resulting in severe reductions in most areas. Both changing ice conditions and reductions due to whaling may have affected geographic distribution and genetic diversity throughout their range, but little is known about range-wide genetic structure or whether it differed in the past. This study represents the first examination of genetic diversity and differentiation across all five putative stocks, including Baffin Bay-Davis Strait, Hudson Bay-Foxe Basin, Bering-Beaufort-Chukchi, Okhotsk, and Spitsbergen. We also utilized ancient specimens from Prince Regent Inlet (PRI) in the Canadian Arctic and compared them with modern stocks. Results from analysis of molecular variance and demographic simulations are consistent with recent and high gene flow between Atlantic and Pacific stocks in the recent past. Significant genetic differences between ancient and modern populations suggest PRI harbored unique maternal lineages in the past that have been recently lost, possibly due to loss of habitat during the Little Ice Age and/or whaling. Unexpectedly, samples from this location show a closer genetic relationship with modern Pacific stocks than Atlantic, supporting high gene flow between the central Canadian Arctic and Beaufort Sea over the past millennium despite extremely heavy ice cover over much of this period.

SELECTION OF CITATIONS
SEARCH DETAIL
...