Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 39(1): 132-139, 2023 01.
Article in English | MEDLINE | ID: mdl-36604256

ABSTRACT

OBJECTIVES: The aim of the present study was to prepare resorbable polylactide fibers for periodontitis treatment using coaxial electrospinning to optimize the release of metronidazole (MNA) by reducing the initial burst effect. METHODS: Poly(L-lactide-co-D,L-lactide) (PLA) fibers mats with different distributions of metronidazole (MNA) were manufactured by coaxial electrospinning (COAX). By COAX spinning the central core of the fiber was enriched with 40% MNA (m/m), while the sheath of the fiber consisted of PLA only (test group). In contrast, fibers of the control group were prepared by conventional electrospinning with the same amount of MNA but with a homogenous drug distribution (HDD - homogenously distributed drug). The release of MNA was determined by analyzing aliquots from the fiber mats using UV-VIS spectroscopy. Agar diffusion tests were carried out to determine the antibacterial effect on periodontopathogenic bacteria. Biocompatibility was tested in direct contact to human gingival fibroblasts (HGF) for two days. RESULTS: The COAX mats showed a retarded drug release compared to the conventional HDD fibers. After 24 h, 64% of total MNA was released cumulatively from the COAX fibers while 90% of the MNA was released from the HDD fibers (controls). The antibacterial effect of COAX fibers was significantly higher after 24 h compared to the HDD fibers. Cell cultivation revealed significant higher numbers of vital cells among the COAX mats. SIGNIFICANCE: COAX fibers showed improved sustained MNA release compared to conventional fibers and can be seen as potential drug delivery systems in local periodontitis treatment.


Subject(s)
Nanofibers , Periodontitis , Humans , Metronidazole/pharmacology , Nanofibers/chemistry , Drug Delivery Systems , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyesters/chemistry , Periodontitis/drug therapy , Drug Liberation
2.
J Neurosci ; 33(6): 2443-56, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23392673

ABSTRACT

In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.


Subject(s)
Arthropod Antennae/physiology , Bees/physiology , Odorants , Olfactory Pathways/physiology , Smell/physiology , Action Potentials/physiology , Animals , Bees/anatomy & histology , Female , Olfactory Pathways/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...