Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(22): 220501, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36493437

ABSTRACT

Nonpairwise multiqubit interactions present a useful resource for quantum information processors. Their implementation would facilitate more efficient quantum simulations of molecules and combinatorial optimization problems, and they could simplify error suppression and error correction schemes. Here, we present a superconducting circuit architecture in which a coupling module mediates two-local and three-local interactions between three flux qubits by design. The system Hamiltonian is estimated via multiqubit pulse sequences that implement Ramsey-type interferometry between all neighboring excitation manifolds in the system. The three-local interaction is coherently tunable over several MHz via the coupler flux biases and can be turned off, which is important for applications in quantum annealing, analog quantum simulation, and gate-model quantum computation.


Subject(s)
Interferometry , Computer Simulation
2.
Science ; 354(6319): 1573-1577, 2016 12 23.
Article in English | MEDLINE | ID: mdl-27940578

ABSTRACT

Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability.

3.
Nat Commun ; 7: 12964, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27808092

ABSTRACT

The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 µs at its flux-insensitive point. Qubit relaxation times T1 across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T2≈85 µs, approximately the 2T1 limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary qubits based on transverse qubit-resonator interaction.

5.
Nano Lett ; 12(6): 2953-8, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22624846

ABSTRACT

Experimental restrictions imposed on the collection and detection of shortwave-infrared photons (SWIR) have impeded single molecule work on a large class of materials whose optical activity lies in the SWIR. Here we report the successful observation of room-temperature single nanocrystal photoluminescence at SWIR wavelengths using a highly efficient multielement superconducting nanowire single photon detector. We confirm that the photoluminescence from single lead sulfide nanocrystals is strongly antibunched, demonstrating the feasibility of performing sophisticated photon correlation experiments on individual weak SWIR emitters, and, more broadly, paving the way for sensitive measurements of spectral observables on infrared quantum systems that are incompatible with current detection techniques.


Subject(s)
Nanostructures/chemistry , Nanostructures/radiation effects , Photometry/methods , Spectrophotometry, Infrared/methods , Infrared Rays , Materials Testing , Particle Size , Photons
6.
Phys Rev Lett ; 98(1): 010503, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17358462

ABSTRACT

The theoretical existence of photon-number-splitting attacks creates a security loophole for most quantum key distribution (QKD) demonstrations that use a highly attenuated laser source. Using ultralow-noise, high-efficiency transition-edge sensor photodetectors, we have implemented the first version of a decoy-state protocol that incorporates finite statistics without the use of Gaussian approximations in a one-way QKD system, enabling the creation of secure keys immune to photon-number-splitting attacks and highly resistant to Trojan horse attacks over 107 km of optical fiber.

SELECTION OF CITATIONS
SEARCH DETAIL
...