Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 288(1948): 20210188, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33849318

ABSTRACT

Temporal variation in the connectivity of populations of migratory animals has not been widely documented, despite having important repercussions for population ecology and conservation. Because the long-distance movements of migratory animals link ecologically distinct and geographically distant areas of the world, changes in the abundance and migratory patterns of species may reflect differential drivers of demographic trends acting over various spatial scales. Using stable hydrogen isotope analyses (δ2H) of feathers from historical museum specimens and contemporary samples obtained in the field, we provide evidence for an approximately 600 km northward shift over 45 years in the breeding origin of a species of songbird of major conservation concern (blackpoll warbler, Setophaga striata) wintering in the foothills of the eastern Andes of Colombia. Our finding mirrors predictions of range shifts for boreal-breeding species under warming climate scenarios and habitat loss in the temperate zone, and underscores likely drivers of widespread declines in populations of migratory birds. Our work also highlights the value of natural history collections to document the effects of global change on biodiversity.


Subject(s)
Passeriformes , Songbirds , Animal Migration , Animals , Colombia , Seasons
2.
Science ; 366(6461): 120-124, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31604313

ABSTRACT

Species extinctions have defined the global biodiversity crisis, but extinction begins with loss in abundance of individuals that can result in compositional and functional changes of ecosystems. Using multiple and independent monitoring networks, we report population losses across much of the North American avifauna over 48 years, including once-common species and from most biomes. Integration of range-wide population trajectories and size estimates indicates a net loss approaching 3 billion birds, or 29% of 1970 abundance. A continent-wide weather radar network also reveals a similarly steep decline in biomass passage of migrating birds over a recent 10-year period. This loss of bird abundance signals an urgent need to address threats to avert future avifaunal collapse and associated loss of ecosystem integrity, function, and services.


Subject(s)
Birds , Animal Migration , Animals , Biodiversity , Canada , Ecosystem , Endangered Species , Extinction, Biological , Grassland , Population Density , Population Dynamics , United States
3.
Nat Ecol Evol ; 2(10): 1603-1609, 2018 10.
Article in English | MEDLINE | ID: mdl-30224817

ABSTRACT

Avian migration is one of Earth's largest processes of biomass transport, involving billions of birds. We estimated continental biomass flows of nocturnal avian migrants across the contiguous United States using a network of 143 weather radars. We show that, relative to biomass leaving in autumn, proportionally more biomass returned in spring across the southern United States than across the northern United States. Neotropical migrants apparently achieved higher survival during the combined migration and non-breeding period, despite an average three- to fourfold longer migration distance, compared with a more northern assemblage of mostly temperate-wintering migrants. Additional mortality expected with longer migration distances was probably offset by high survival in the (sub)tropics. Nearctic-Neotropical migrants relying on a 'higher survivorship' life-history strategy may be particularly sensitive to variations in survival on the overwintering grounds, highlighting the need to identify and conserve important non-breeding habitats.


Subject(s)
Animal Migration , Biomass , Birds/physiology , Animals , Life History Traits , Longevity , Seasons , United States
4.
Glob Chang Biol ; 23(12): 5284-5296, 2017 12.
Article in English | MEDLINE | ID: mdl-28736872

ABSTRACT

Understanding the susceptibility of highly mobile taxa such as migratory birds to global change requires information on geographic patterns of occurrence across the annual cycle. Neotropical migrants that breed in North America and winter in Central America occur in high concentrations on their non-breeding grounds where they spend the majority of the year and where habitat loss has been associated with population declines. Here, we use eBird data to model weekly patterns of abundance and occurrence for 21 forest passerine species that winter in Central America. We estimate species' distributional dynamics across the annual cycle, which we use to determine how species are currently associated with public protected areas and projected changes in climate and land-use. The effects of global change on the non-breeding grounds is characterized by decreasing precipitation, especially during the summer, and the conversion of forest to cropland, grassland, or peri-urban. The effects of global change on the breeding grounds are characterized by increasing winter precipitation, higher temperatures, and the conversion of forest to peri-urban. During spring and autumn migration, species are projected to encounter higher temperatures, forests that have been converted to peri-urban, and increased precipitation during spring migration. Based on current distributional dynamics, susceptibility to global change is characterized by the loss of forested habitats on the non-breeding grounds, warming temperatures during migration and on the breeding grounds, and declining summer rainfall on the non-breeding grounds. Public protected areas with low and medium protection status are more prevalent on the non-breeding grounds, suggesting that management opportunities currently exist to mitigate near-term non-breeding habitat losses. These efforts would affect more individuals of more species during a longer period of the annual cycle, which may create additional opportunities for species to respond to changes in habitat or phenology that are likely to develop under climate change.


Subject(s)
Animal Migration , Birds/physiology , Climate Change , Animals , Breeding , Central America , Demography , Ecosystem , Forests , North America , Population Dynamics , Rain , Temperature
5.
Sci Rep ; 7(1): 3405, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28611372

ABSTRACT

Long-distance migratory organisms are under strong selection to migrate quickly. Stopovers demand more time than flying and are used by individuals to refuel during migration, but the effect of fuel loads (fat) acquired at stopover sites on the subsequent pace of migration has not been quantified. We studied stopover behaviour of Grey-cheeked Thrush (Catharus minimus) at a site in northern Colombia and then tracked their migration using an intercontinental radio-telemetry array. Tracking confirmed long-distance flights of more than 3000 km, highlighting the key importance of a single stopover site to the migration strategy of this species. Our results suggest that these songbirds behave as time-minimizers as predicted by optimal migration theory, and that fuel loads acquired at this South American stopover site, together with departure date, carry-over to influence the pace of migration, contributing to differences in travel time of up to 30 days in birds subsequently detected in the U. S. and Canada. Such variation in the pace of migration arising from a single stopover site, likely has important fitness consequences and suggests that identifying important fuelling sites will be essential to effectively conserve migratory species.


Subject(s)
Animal Migration/physiology , Behavior, Animal/physiology , Feeding Behavior , Songbirds/physiology , Telemetry/methods , Animals , Models, Biological , Time Factors
6.
Ecol Appl ; 25(1): 39-51, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26255356

ABSTRACT

In the face of global environmental change, the importance of protected areas in biological management and conservation is expected to grow. Birds have played an important role as biological indicators of the effectiveness of protected areas, but with little consideration given to where species occur outside the breeding season. We estimated weekly probability of occurrence for 308 bird species throughout the year within protected areas in the western contiguous USA using eBird occurrence data for the combined period 2004 to 2011. We classified species based on their annual patterns of occurrence on lands having intermediate conservation mandates (GAP status 2 and 3) administered by the Bureau of Land Management (BLM) and the United States Forest Service (USFS). We identified species having consistent annual association with one agency, and species whose associations across the annual cycle switched between agencies. BLM and USFS GAP status 2 and 3 lands contained low to moderate proportions of species occurrences, with proportions highest for species that occurred year-round or only during the summer. We identified two groups of species whose annual movements resulted in changes in stewardship responsibilities: (1) year-round species that occurred on USFS lands during the breeding season and BLM lands during the nonbreeding season; and (2) summer species that occurred on USFS lands during the breeding season and BLM lands during spring and autumn migration. Species that switched agencies had broad distributions, bred on high-elevation USFS lands, were not more likely to be identified as species of special management concern, and migrated short (year-round species) to long distances (summer species). Our findings suggest cooperative efforts that address the requirements of short-distance migratory species on GAP status 2 lands (n = 20 species) and GAP status 3 lands (n = 24) and long-distance migratory species on GAP status 2 lands (n = 9) would likely benefit their populations. Such efforts may prove especially relevant for species whose seasonal movements result in associations with different environments containing contrasting global change processes and management mandates.


Subject(s)
Birds/physiology , Conservation of Natural Resources , United States Government Agencies , Animal Migration , Animals , Seasons , United States
7.
PLoS One ; 5(1): e8608, 2010 Jan 06.
Article in English | MEDLINE | ID: mdl-20062538

ABSTRACT

The development of species priorities for conservation at local or regional scales (for example, within a state or province) poses an interesting paradox. One the one hand, locally or regionally-derived species priorities may lead to greater interest in and resources directed to biodiversity conservation by local or regional institutions. On the other hand, locally or regionally-derived species priorities could overlook national or global priorities. We assessed U.S. state government agency endangered-threatened bird lists to determine the comparative representation of species of global versus local conservation significance on them. State lists tended to be represented primarily by species of low global risk-low global responsibility (range: 15-100%; mean 51%) and high global risk-high global responsibility (range: 0-73%; mean 35%). In 25 states, more than half of the species on the state lists were in the low global risk-low global responsibility category. Most U.S. state agency lists represent a combined strategy of highlighting species of both local and global conservation significance. Even with this combined local-global strategy, most state lists were predominated by species that represent local but not global conservation significance. Such a strategy could have profound negative consequences for many species that are not formally recognized under national endangered species protections but that are also left off of state-level endangered species lists.


Subject(s)
Conservation of Natural Resources , Endangered Species , Government Agencies , Animals , United States
8.
Mol Phylogenet Evol ; 45(1): 1-13, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17768072

ABSTRACT

One of the most novel foraging strategies in Neotropical birds is army-ant-following, in which birds prey upon arthropods and small vertebrates flushed from the forest floor by swarm raids of the army-ant Eciton burchellii. This specialization is most developed in the typical antbirds (Thamnophilidae) which are divisible into three specialization categories: (1) those that forage at swarms opportunistically as army-ants move through their territories (occasional followers), (2) those that follow swarms beyond their territories but also forage independently of swarms (regular followers), and (3) those that appear incapable of foraging independently of swarms (obligate followers). Although army-ant-following is one of the great spectacles of tropical forests, basic questions about its evolution remain unaddressed. Using a strongly resolved molecular phylogeny of the typical antbirds, we found that army-ant-following is phylogenetically conserved, with regular following having evolved only three times, and that the most likely evolutionary progression was from least (occasional) to more (regular) to most (obligate) specialized, with no reversals from the obligate state. Despite the dependence of the specialists on a single ant species, molecular dating indicates that army-ant-following has persisted in antbirds since the late Miocene. These results provide the first characterization of army-ant-following as an ancient and phylogenetically conserved specialization.


Subject(s)
Ants , Behavior, Animal/physiology , Biological Evolution , Birds/genetics , Genetic Speciation , Phylogeny , Tropical Climate , Animals , Ants/physiology , Birds/physiology , Ecosystem , Food Chain , Genetic Variation , South America
10.
Science ; 308(5727): 1460-2, 2005 Jun 03.
Article in English | MEDLINE | ID: mdl-15860589

ABSTRACT

The ivory-billed woodpecker (Campephilus principalis), long suspected to be extinct, has been rediscovered in the Big Woods region of eastern Arkansas. Visual encounters during 2004 and 2005, and analysis of a video clip from April 2004, confirm the existence of at least one male. Acoustic signatures consistent with Campephilus display drums also have been heard from the region. Extensive efforts to find birds away from the primary encounter site remain unsuccessful, but potential habitat for a thinly distributed source population is vast (over 220,000 hectares).


Subject(s)
Birds , Animals , Arkansas , Biological Evolution , Conservation of Natural Resources , Ecology , Male , Video Recording
11.
Proc Natl Acad Sci U S A ; 99(17): 11235-40, 2002 Aug 20.
Article in English | MEDLINE | ID: mdl-12177451

ABSTRACT

Research into population declines of North American bird species has mainly focused on the fragmentation of habitat on the breeding or wintering grounds [Robinson, S. K., Thompson, F. R., Donovan, T. M., Whitehead, D. R. & Faaborg, J. (1995) Science 267, 1987-1990]. In contrast, research into declines of European species has mainly focused on intensification of agriculture [Donald, P. F., Green, R. E. & Heath, M. F. (2001) Proc. R. Soc. London Ser. B 268, 25-29] and the role played by the atmospheric deposition of pollutants, in particular, acid rain [Graveland, J. (1998) Environ. Rev. 6, 41-54]. However, despite widespread unexplained declines of bird populations in regions of heavy wet acid ion deposition [Sauer, J. R., Hines, J. E. & Fallon, J. (2001) The North American Breeding Bird Survey Results and Analysis 1966-2000 (Patuxent Wildlife Research Center, Laurel, MD)], no North American studies have presented evidence linking such widespread terrestrial bird declines to acid rain. To address the question of the role played by acid rain in population declines of eastern North American songbird species, we combine data from several sources. We use a multiple logistic regression model to test for adverse effects of acid rain on the Wood Thrush, while controlling for regional abundance, landscape-level habitat fragmentation, elevation, soil pH, and vegetation. We show a strong, highly significant, negative effect of acid rain on the predicted probability of breeding by this species, and interactions with elevation, low pH soils, and habitat fragmentation that worsen these negative effects. Our results suggest an important role for acid rain in recent declines of some birds breeding in the eastern United States, particularly in high elevation zones with low pH soils, and show the need to consider other large-scale influences, in addition to habitat fragmentation, when addressing bird population declines.


Subject(s)
Acid Rain/adverse effects , Songbirds/growth & development , Animals , Environment , Environmental Pollution/adverse effects , NADP/metabolism , Population Density , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...