Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosurg ; 113(6): 1152-63, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20635854

ABSTRACT

OBJECT: Resection of lesions involving the supplementary motor area (SMA) may result in immediate postoperative motor and speech deficits that are reversible in most cases. In the present study the authors aimed to determine the critical involvement of SMA in the lesioned and healthy hemispheres in this functional recovery. They hypothesized that compensatory mechanisms take place following surgery in the SMA, and that these mechanisms can involve either the lesioned or the non-lesioned hemisphere. In addition, they hypothesized that a correlation will be present between the functional MR imaging (fMR) imaging-related activation in the SMA and the occurrence of a functional deficit during intraoperative cortical stimulation. METHODS: Twenty-six patients scheduled for resection of space-occupying lesions involving, or in the vicinity of, the SMA were recruited. Patients underwent an fMR imaging examination that included finger-tapping and verb-generation tests to assess for motor and language functions. Intraoperatively direct cortical stimulation (DCS) of the SMA region was performed while patients were monitored for language and motor functions using tests similar to those used for the fMR imaging. Task dysfunction during DCS assessed the critical involvement of the SMA in the tested functions. Neurological evaluations were performed prior to surgery and at 3 time points within a month following surgery. A region of interest-based approach was used to evaluate fMR imaging blood oxygen level-dependent activation level and asymmetry in the SMA. These measurements were later compared with the intraoperative DCS and neurological findings. RESULTS: Functional MR imaging showed greater activation and dominance of the SMA in the lesioned hemisphere in patients who exhibited no motor or language dysfunction during DCS. In addition, patients with the highest activation of the SMA in the lesioned hemisphere for language and motor tests showed stronger coupling of this region with ipsilateral motor and language networks. In contrast, activation in the nonlesioned hemisphere did not correspond with DCS results. CONCLUSIONS: The authors' findings demonstrate the necessity of activation in the vicinity of the lesioned SMA for functional compensation in motor and language tasks. It is possible that more effective functional coupling of the SMA with motor and language areas in the same hemisphere prevents dysfunctions following surgical intervention. Importantly, fMR imaging activation in the unaffected SMA was not sufficient for development of functional compensation and, if anything, indicated decompensation.


Subject(s)
Brain Diseases/surgery , Motor Cortex/surgery , Neurosurgical Procedures/adverse effects , Adaptation, Physiological , Adult , Aged , Brain/surgery , Brain Diseases/etiology , Cerebral Cortex , Electric Stimulation , Female , Frontal Lobe/surgery , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Predictive Value of Tests , Recovery of Function , Speech Disorders/etiology , Task Performance and Analysis , Young Adult
2.
Proc Natl Acad Sci U S A ; 106(33): 14120-5, 2009 Aug 18.
Article in English | MEDLINE | ID: mdl-19666562

ABSTRACT

Variations in people's vulnerability to stressful life events may rise from a predated neural sensitivity as well as from differential neural modifications in response to the event. Because the occurrence of a stressful life event cannot be foreseen, characterizing the temporal trajectory of its neural manifestations in humans has been a real challenge. The current prospective study examined the emotional experience and brain responses of 50 a priori healthy new recruits to the Israeli Defense Forces at 2 time points: before they entered their mandatory military service and after their subsequent exposure to stressful events while deployed in combat units. Over time, soldiers reported on increase in stress symptoms that was correlated with greater amygdala and hippocampus responsiveness to stress-related content. However, these closely situated core limbic regions exhibited different temporal trajectories with regard to the stress effect; whereas amygdala's reactivity before stress predicted the increase in stress symptoms, the hippocampal change in activation over time correlated with the increase in such symptoms. Hippocampal plasticity was also reflected by a modification over time of its functional coupling with the ventromedial prefrontal cortex, and this coupling magnitude was again predicted by predated amygdala reactivity. Together, these findings suggest that variations in human's likelihood to develop symptomatic phenomena following stressful life events may depend on a balanced interplay between their amygdala's predisposing reactivity and hippocampal posteriori intra- and interregional plasticity. Accordingly, an individually tailored therapeutic approach for trauma survivors should target these 2 neural probes while considering their unique temporal prints.


Subject(s)
Amygdala/physiopathology , Hippocampus/physiology , Neuronal Plasticity , Stress, Psychological/physiopathology , Adolescent , Adult , Amygdala/physiology , Case-Control Studies , Female , Humans , Limbic System , Magnetic Resonance Imaging/methods , Male , Military Personnel , Neurons/metabolism , Prospective Studies
3.
Amyloid ; 16(2): 94-8, 2009.
Article in English | MEDLINE | ID: mdl-20536402

ABSTRACT

Amyloidoma is a term referring to a tumor-like deposition of extracellular insoluble fibrillar protein. Tumor-like amyloid formation in the brain had been described in isolated cases. However no advanced radiological studies to characterize these lesions have been reported. In the report, we have describe a 59-year-old woman, presented several months prior to diagnosis with memory decline, dizziness, walking instability, and speech difficulties. MRI revealed a left basal ganglia lesion with an intraventricular component. The patient underwent a stereotactic biopsy, which confirmed the diagnosis of amyloidoma, an extensive radiographic characterization of amyloidoma using advanced MR techniques was done, including magnetic resonance spectroscopy, dynamic susceptibility contrast, susceptibility weighted image (SWI), and magnetization transfer (MTR). All advanced MR techniques were able to characterize the amyloidoma as a non-neoplastic process. This is an example where such methods can be used for differential diagnosis of atypical brain lesions.


Subject(s)
Amyloidosis/diagnosis , Brain Diseases/diagnosis , Magnetic Resonance Imaging/methods , Amyloidosis/pathology , Biopsy , Brain Diseases/pathology , Female , Humans , Middle Aged
4.
Neurocase ; 14(6): 465-73, 2008.
Article in English | MEDLINE | ID: mdl-19012166

ABSTRACT

One possible mechanism for language plasticity in cases of lesions in left dominant hemisphere is the recruitment of homologous region in the unaffected non-dominant hemisphere. The potential of the right hemisphere to carry out such plasticity is expressed by the functional outcome of patients with lesions in the left hemisphere acquired at childhood prior to language acquisition. Whether lesions in the dominant hemisphere acquired in adulthood can result in functional recovery of language by means of recruitment of the non-dominant hemisphere is undetermined. We describe a 28-year-old, right-handed male diagnosed with a left temporo-frontal glioma. It was decided to manage him expectantly due to the low level of suspicion of malignancy and the close proximity of the lesion to critical language function centers. Language functional MRI (fMRI) tests were performed twice within the ensuing 2 years before surgical intervention. Regional brain activation was measured within the temporal and frontal lobes. Laterality index (LI) was calculated based on the corresponding number of activated voxels. The main finding is that over time, prior to resection of the enlarged tumor, the inferior frontal gyrus (IFG) changed from being strongly left lateralized in the first fMRI exam to being bilateral in the second fMRI exam, mainly due to larger activation in the right hemisphere. By that time, although the patient was not aphasic, his language performance was significantly below average. These findings suggest that a slow growing tumor in an adult language-related area might result in a functional reorganization by recruiting the right hemisphere. However, the contribution of such reorganization to the preservation of language performance remains equivocal.


Subject(s)
Astrocytoma/pathology , Astrocytoma/physiopathology , Brain , Dominance, Cerebral , Language , Adult , Astrocytoma/diagnosis , Astrocytoma/surgery , Brain/pathology , Brain/physiology , Child , Electric Stimulation , Humans , Intraoperative Period , Language Tests , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...