Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Phys Rev E ; 109(4-2): 045209, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38755937

ABSTRACT

Precise modeling of shocks in inertial confinement fusion implosions is critical for obtaining the desired compression in experiments. Shock velocities and postshock conditions are determined by laser-energy deposition, heat conduction, and equations of state. This paper describes experiments at the National Ignition Facility (NIF) [E. M. Campbell and W. J. Hogan, Plasma Phys. Control. Fusion 41, B39 (1999)10.1088/0741-3335/41/12B/303] where multiple shocks are launched into a cone-in-shell target made of polystyrene, using laser-pulse shapes with two or three pickets and varying on-target intensities. Shocks are diagnosed using the velocity interferometric system for any reflector (VISAR) diagnostic [P. M. Celliers et al., Rev. Sci. Instrum. 75, 4916 (2004)0034-674810.1063/1.1807008]. Simulated and inferred shock velocities agree well for the range of intensities studied in this work. These directly-driven shock-timing experiments on the NIF provide a good measure of early-time laser-energy coupling. The validated models add to the credibility of direct-drive-ignition designs at the megajoule scale.

2.
Phys Rev Lett ; 132(3): 035101, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307081

ABSTRACT

Magnetic reconnection is a ubiquitous and fundamental process in plasmas by which magnetic fields change their topology and release magnetic energy. Despite decades of research, the physics governing the reconnection process in many parameter regimes remains controversial. Contemporary reconnection theories predict that long, narrow current sheets are susceptible to the tearing instability and split into isolated magnetic islands (or plasmoids), resulting in an enhanced reconnection rate. While several experimental observations of plasmoids in the regime of low-to-intermediate ß (where ß is the ratio of plasma thermal pressure to magnetic pressure) have been made, there is a relative lack of experimental evidence for plasmoids in the high-ß reconnection environments which are typical in many space and astrophysical contexts. Here, we report strong experimental evidence for plasmoid formation in laser-driven high-ß reconnection experiments.

3.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37166247

ABSTRACT

The sub-aperture backscatter (SABS) diagnostic on the OMEGA EP Laser System [Waxer et al., Opt. Photonics News 16, 30 (2005)] is a diagnostic that is used to measure the backscattered and sidescattered light during laser-plasma interaction experiments [W. L. Kruer, The Physics of Laser Plasma Interactions, Frontiers in Physics Vol. 73, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988) and Myatt et al., Phys. Plasmas 21, 055501 (2014)] that are relevant to high-energy-density physics and inertial confinement fusion. The diagnostic collects stimulated Brillouin scattering (SBS) UV light at around 351 nm and stimulated Raman scattering (SRS) in the visible-light regime in the 420-720-nm-wavelength range and provides spectrally and temporally resolved information. Five 1-in. light collectors, composed of a lens, ground glass diffuser, and coupling into a 300-µm fiber, are positioned behind the last steering mirror on one of the four beamlines to catch a portion of the beam cross section (∼1.5%) of the emission that is scattered into the beamline. The SRS light is collected in two light collectors, combined, and transported via graded index fibers to a streaked spectrometer. The SABS-SRS streak spectrometer has a temporal and spectral resolution of 100 ps and 1 nm, respectively. Three other light collectors collect, combine, and transport the SBS signal to a Hamamatsu high-voltage photodiode, where an oscilloscope digitizes the data, providing a time resolution of better than 1 ns. To obtain an absolute energy calibration of SRS measurements, light signals of known energy and wavelength were injected into the light collectors one at a time. The resulting counts on the streak camera charge-coupled device for SRS are then correlated with the incident fluence of scattered light at the light collector in order to allow a quantitative assessment of streak camera sensitivity to determine the energy of the scattered light during experiments. The measurements were performed in situ from the light collectors to the detectors. Additional offline measurements provided the transmission of the optics between the target chamber center and the light collectors.

4.
Phys Rev E ; 106(5-2): 055214, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559357

ABSTRACT

A series of two-dimensional particle-in-cell simulations with speckled laser drivers was carried out to study hot electron generation in direct-drive inertial confinement fusion on OMEGA. Scaling laws were obtained for hot electron fraction and temperature as functions of laser/plasma conditions in the quarter-critical region. Using these scalings and conditions from hydro simulations, the temporal history of hot electron generation can be predicted. The scalings can be further improved to predict hard x-rays for a collection of OMEGA warm target implosions within experimental error bars. These scalings can be readily implemented into inertial confinement fusion design codes.

5.
Phys Rev E ; 106(5-2): 055204, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559374

ABSTRACT

Target preheat by superthermal electrons from laser-plasma instabilities is a major obstacle to achieving thermonuclear ignition via direct-drive inertial confinement fusion at the National Ignition Facility (NIF). Polar-direct-drive surrogate plastic implosion experiments were performed on the NIF to quantify preheat levels at an ignition-relevant scale and develop mitigation strategies. The experiments were used to infer the hot-electron temperature, energy fraction, and divergence, and to directly measure the spatial hot-electron energy deposition profile inside the imploding shell. Silicon layers buried in the ablator are shown to mitigate the growth of laser-plasma instabilities and reduce preheat, providing a promising path forward for ignition designs at an on-target intensity of about 10^{15}W/cm^{2}.

6.
Rev Sci Instrum ; 93(10): 105102, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319381

ABSTRACT

A platform has been developed to study laser-direct-drive energy coupling at the National Ignition Facility (NIF) using a plastic sphere target irradiated in a polar-direct-drive geometry to launch a spherically converging shock wave. To diagnose this system evolution, eight NIF laser beams are directed onto a curved Cu foil to generate Heα line emission at a photon energy of 8.4 keV. These x rays are collected by a 100-ps gated x-ray imager in the opposing port to produce temporally gated radiographs. The platform is capable of acquiring images during and after the laser drive launches the shock wave. A backlighter profile is fit to the radiographs, and the resulting transmission images are Abel inverted to infer radial density profiles of the shock front and to track its temporal evolution. The measurements provide experimental shock trajectories and radial density profiles that are compared to 2D radiation-hydrodynamic simulations using cross-beam energy transfer and nonlocal heat-transport models.

7.
Phys Rev E ; 106(1): L013201, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974626

ABSTRACT

In laser-driven implosions for laboratory fusion, the comparison of hot-spot x-ray yield to neutron production can serve to infer hot-spot mix. For high-performance direct-drive implosions, this ratio depends sensitively on the degree of equilibration between the ion and electron fluids. A scaling for x-ray yield as a function of neutron yield and characteristic ion and electron hot-spot temperatures is developed on the basis of simulations with varying degrees of equilibration. We apply this model to hot-spot x-ray measurements of direct-drive cryogenic implosions typical of the direct-drive designs with best ignition metrics. The comparison of the measured x-ray and neutron yields indicates that hot-spot mix, if present, is below a sensitivity estimated as ∼2% by-atom mix of ablator plastic into the hot spot.

8.
Phys Rev Lett ; 127(5): 055001, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397224

ABSTRACT

Hot electrons generated by laser-plasma instabilities degrade the performance of laser-fusion implosions by preheating the DT fuel and reducing core compression. The hot-electron energy deposition in the DT fuel has been directly measured for the first time by comparing the hard x-ray signals between DT-layered and mass-equivalent ablator-only implosions. The electron energy deposition profile in the fuel is inferred through dedicated experiments using Cu-doped payloads of varying thickness. The measured preheat energy accurately explains the areal-density degradation observed in many OMEGA implosions. This technique can be used to assess the viability of the direct-drive approach to laser fusion with respect to the scaling of hot-electron preheat with laser energy.

9.
Phys Rev E ; 104(1): L013201, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412205

ABSTRACT

A series of thin glass-shell shock-driven DT gas-filled capsule implosions was conducted at the OMEGA laser facility. These experiments generate conditions relevant to the central plasma during the shock-convergence phase of ablatively driven inertial confinement fusion (ICF) implosions. The spectral temperatures inferred from the DTn and DDn spectra are most consistent with a two-ion-temperature plasma, where the initial apparent temperature ratio, T_{T}/T_{D}, is 1.5. This is an experimental confirmation of the long-standing conjecture that plasma shocks couple energy directly proportional to the species mass in multi-ion plasmas. The apparent temperature ratio trend with equilibration time matches expected thermal equilibration described by hydrodynamic theory. This indicates that deuterium and tritium ions have different energy distributions for the time period surrounding shock convergence in ignition-relevant ICF implosions.

10.
Rev Sci Instrum ; 92(4): 043524, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243484

ABSTRACT

We present measurements of spatially and temporally resolved electron temperature in high-energy-density plasmas using gated x-ray pinhole imagers. A 2D image of bremsstrahlung x-ray self-emission from laser-driven plasma plumes is detected at the same time through two pinholes covered with different filter materials. By comparing the attenuated signal through each filter, a spatially resolved electron temperature as low as 0.1 keV can be estimated. Measurements of the plasma plume taken from different directions indicate that imaging through extended plasmas has a negligible effect on the temperature estimates. Methods for estimating the expected signal, selecting filters, and incorporating the response of the detector are discussed.

11.
Rev Sci Instrum ; 92(3): 033511, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820108

ABSTRACT

The Scattered Light Time-history Diagnostic (SLTD) is being implemented at the National Ignition Facility (NIF) to greatly expand the angular coverage of absolute scattered-light measurements for direct- and indirect-drive inertial confinement fusion (ICF) experiments. The SLTD array will ultimately consist of 15 units mounted at a variety of polar and azimuthal angles on the NIF target chamber, complementing the existing NIF backscatter suite. Each SLTD unit collects and diffuses scattered light onto a set of three optical fibers, which transport the light to filtered photodiodes to measure scattered light in different wavelength bands: stimulated Brillouin scattering (350 nm-352 nm), stimulated Raman scattering (430 nm-760 nm), and ω/2 (695 nm-745 nm). SLTD measures scattered light with a time resolution of ∼1 ns and a signal-to-noise ratio of up to 500. Currently, six units are operational and recording data. Measurements of the angular dependence of scattered light will strongly constrain models of laser energy coupling in ICF experiments and allow for a more robust inference of the total laser energy coupled to implosions.

12.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200011, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33280561

ABSTRACT

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

13.
Phys Rev E ; 99(3-1): 033203, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30999431

ABSTRACT

Raman side scatter, whereby scattered light is resonant while propagating perpendicularly to a density gradient in a plasma, was identified experimentally in planar-target experiments at the National Ignition Facility at intensities orders of magnitudes below the threshold for absolute instability. We have derived a new theoretical description of convective Raman side scatter below the absolute threshold, validated by numerical simulations. We show that inertial confinement fusion experiments at full ignition scale, i.e., with mm-scale spot sizes and density scale lengths, are prone to increased coupling losses from Raman side scatter as the instability can extend from the absolute regime near the quarter-critical density to the convective regime at lower electron densities.

15.
Rev Sci Instrum ; 90(1): 013506, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30709229

ABSTRACT

The sensitivity of Fuji SR and MS image plates (IPs) used in x-ray spectrometers on OMEGA and the National Ignition Facility has been measured using two techniques. A set of radioisotopes has been used to constrain image-plate sensitivity between 6 and 60 keV, while a Manson source has been used to expose image plates to x rays at energies between 1.5 and 8 keV. These data have shown variation in sensitivity on the order of 5% for a given IP type and scanner settings. The radioisotope technique has also been used to assess IP fading properties for MS-type plates over long times. IP sensitivity as a function of scanner settings and pixel size has been systematically examined, showing variations of up to a factor of 2 depending on the IP type. Cross-calibration of IP scanners at different facilities is necessary to produce a consistent absolute sensitivity curve spanning the energy range of 2-60 keV.

16.
J Neurosci Methods ; 311: 193-199, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30339880

ABSTRACT

BACKGROUND: Supra-threshold galvanic vestibular stimulation (GVS) can be used to challenge the balance control system by disrupting vestibular inputs. The goal of this study was to propose an objective method to assess variability across subjects in the minimum safe GVS level that causes maximum balance degradation. New method: Thirteen healthy young subjects stood on a compliant foam surface with their eyes closed and tried to maintain a stable upright stance. Variables related to the stability of the trunk and whole body were quantified to characterize the relationship between postural responses and GVS at amplitudes from 0 to 4.5 mA in 0.5 mA increments. The relationship between decrements in postural responses and GVS was linear up to a minimum GVS level (called KNEE). An increase in the stimulation level above that did not lead to any further degradation of balance performance. The KNEE was determined by iteratively performing linear fits to the performance measure at different stimulation levels. RESULTS: There were individual differences in KNEE; it was in the range of 1-2.5 mA across subjects. GVS caused an average performance decrement of 27-99% across six variables at the KNEE level compared to a no-stimulus condition. Comparison to existing methods: We propose a method to consistently attain the maximum level of impairment across subjects using the minimum current intensity, to minimize all types of adverse effects usually observed at high intensities. CONCLUSIONS: Individual differences in the disruption of posture control in response to GVS have important implications for testing and training paradigms.


Subject(s)
Electric Stimulation/methods , Galvanic Skin Response , Postural Balance/physiology , Vestibule, Labyrinth/physiology , Adult , Biomechanical Phenomena , Calibration , Female , Humans , Male , Mastoid/physiology , Reproducibility of Results
17.
Phys Rev Lett ; 120(8): 085001, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29543010

ABSTRACT

Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces ablation pressure and implosion velocity in direct-drive inertial confinement fusion. Mitigating CBET is demonstrated for the first time in inertial-confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. We show that, in polar direct-drive, wavelength detuning increases the equatorial region velocity experimentally by 16% and alters the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure.

18.
Phys Rev Lett ; 120(5): 055001, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29481170

ABSTRACT

Planar laser-plasma interaction (LPI) experiments at the National Ignition Facility (NIF) have allowed access for the first time to regimes of electron density scale length (∼500 to 700 µm), electron temperature (∼3 to 5 keV), and laser intensity (6 to 16×10^{14} W/cm^{2}) that are relevant to direct-drive inertial confinement fusion ignition. Unlike in shorter-scale-length plasmas on OMEGA, scattered-light data on the NIF show that the near-quarter-critical LPI physics is dominated by stimulated Raman scattering (SRS) rather than by two-plasmon decay (TPD). This difference in regime is explained based on absolute SRS and TPD threshold considerations. SRS sidescatter tangential to density contours and other SRS mechanisms are observed. The fraction of laser energy converted to hot electrons is ∼0.7% to 2.9%, consistent with observed levels of SRS. The intensity threshold for hot-electron production is assessed, and the use of a Si ablator slightly increases this threshold from ∼4×10^{14} to ∼6×10^{14} W/cm^{2}. These results have significant implications for mitigation of LPI hot-electron preheat in direct-drive ignition designs.

19.
Phys Rev Lett ; 118(18): 185003, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28524679

ABSTRACT

A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.

20.
Phys Rev Lett ; 118(9): 095002, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28306316

ABSTRACT

The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)OPCOB80030-401810.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.

SELECTION OF CITATIONS
SEARCH DETAIL
...