Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(50): 8621-8636, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37845031

ABSTRACT

Astrocytes play essential roles in the developing nervous system, including supporting synapse function. These astrocyte support functions emerge coincident with brain maturation and may be tailored in a region-specific manner. For example, gray matter astrocytes have elaborate synapse-associated processes and are morphologically and molecularly distinct from white matter astrocytes. This raises the question of whether there are unique environmental cues that promote gray matter astrocyte identity and synaptogenic function. We previously identified adrenergic receptors as preferentially enriched in developing gray versus white matter astrocytes, suggesting that noradrenergic signaling could be a cue that promotes the functional maturation of gray matter astrocytes. We first characterized noradrenergic projections during postnatal brain development in mouse and human, finding that process density was higher in the gray matter and increased concurrently with astrocyte maturation. RNA sequencing revealed that astrocytes in both species expressed α- and ß-adrenergic receptors. We found that stimulation of ß-adrenergic receptors increased primary branching of rodent astrocytes in vitro Conversely, astrocyte-conditional knockout of the ß1-adrenergic receptor reduced the size of gray matter astrocytes and led to dysregulated sensorimotor integration in female mice. These studies suggest that adrenergic signaling to developing astrocytes impacts their morphology and has implications for adult behavior, particularly in female animals. More broadly, they demonstrate a mechanism through which environmental cues impact astrocyte development. Given the key roles of norepinephrine in brain states, such as arousal, stress, and learning, these findings could prompt further inquiry into how developmental stressors impact astrocyte development and adult brain function.SIGNIFICANCE STATEMENT This study demonstrates a role for noradrenergic signaling in the development of gray matter astrocytes. We provide new evidence that the ß1-adrenergic receptor is robustly expressed by both mouse and human astrocytes, and that conditional KO of the ß1-adrenergic receptor from female mouse astrocytes impairs gray matter astrocyte maturation. Moreover, female conditional KO mice exhibit behavioral deficits in two paradigms that test sensorimotor function. Given the emerging interest in moving beyond RNA sequencing to probe specific pathways that underlie astrocyte heterogeneity, this study provides a foundation for future investigation into the effect of noradrenergic signaling on astrocyte functions in conditions where noradrenergic signaling is altered, such as stress, arousal, and learning.


Subject(s)
Adrenergic Agents , Astrocytes , Humans , Mice , Animals , Female , Adrenergic Agents/metabolism , Astrocytes/metabolism , Signal Transduction , Norepinephrine/metabolism , Receptors, Adrenergic, beta/metabolism , Receptors, Adrenergic
2.
Trends Immunol ; 41(9): 753-755, 2020 09.
Article in English | MEDLINE | ID: mdl-32800455

ABSTRACT

Huang et al. have found that deletion of astrocyte lineage-specifying transcription factor NFIA from mature astrocytes alters astrocyte morphology, molecular identity, and synaptic-support capacity in a region-specific manner. We discuss the implications of these findings in light of emerging roles for astrocytes in immune cell crosstalk.


Subject(s)
Astrocytes , Humans
3.
Elife ; 82019 03 11.
Article in English | MEDLINE | ID: mdl-30855229

ABSTRACT

Interactions between epithelial cells and neurons influence a range of sensory modalities including taste, touch, and smell. Vertebrate and invertebrate epidermal cells ensheath peripheral arbors of somatosensory neurons, including nociceptors, yet the developmental origins and functional roles of this ensheathment are largely unknown. Here, we describe an evolutionarily conserved morphogenetic mechanism for epidermal ensheathment of somatosensory neurites. We found that somatosensory neurons in Drosophila and zebrafish induce formation of epidermal sheaths, which wrap neurites of different types of neurons to different extents. Neurites induce formation of plasma membrane phosphatidylinositol 4,5-bisphosphate microdomains at nascent sheaths, followed by a filamentous actin network, and recruitment of junctional proteins that likely form autotypic junctions to seal sheaths. Finally, blocking epidermal sheath formation destabilized dendrite branches and reduced nociceptive sensitivity in Drosophila. Epidermal somatosensory neurite ensheathment is thus a deeply conserved cellular process that contributes to the morphogenesis and function of nociceptive sensory neurons.


Subject(s)
Epidermis/anatomy & histology , Epidermis/growth & development , Morphogenesis , Nociceptors/cytology , Nociceptors/physiology , Animals , Drosophila , Epidermal Cells/cytology , Epidermal Cells/physiology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...