Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35957250

ABSTRACT

Radar sensors were among the first perceptual sensors used for automated driving. Although several other technologies such as lidar, camera, and ultrasonic sensors are available, radar sensors have maintained and will continue to maintain their importance due to their reliability in adverse weather conditions. Virtual methods are being developed for verification and validation of automated driving functions to reduce the time and cost of testing. Due to the complexity of modelling high-frequency wave propagation and signal processing and perception algorithms, sensor models that seek a high degree of accuracy are challenging to simulate. Therefore, a variety of different modelling approaches have been presented in the last two decades. This paper comprehensively summarises the heterogeneous state of the art in radar sensor modelling. Instead of a technology-oriented classification as introduced in previous review articles, we present a classification of how these models can be used in vehicle development by using the V-model originating from software development. Sensor models are divided into operational, functional, technical, and individual models. The application and usability of these models along the development process are summarised in a comprehensive tabular overview, which is intended to support future research and development at the vehicle level and will be continuously updated.

2.
Eur Phys J D At Mol Opt Phys ; 76(6): 109, 2022.
Article in English | MEDLINE | ID: mdl-35782906

ABSTRACT

Abstract: We investigate the strong-field ion emission from the surface of isolated silica nanoparticles aerosolized from an alcoholic solution, and demonstrate the applicability of the recently reported near-field imaging at 720 nm [Rupp et al., Nat. Comm., 10(1):4655, 2019] to longer wavelength (2  µ m) and polarizations with arbitrary ellipticity. Based on the experimental observations, we discuss the validity of a previously introduced semi-classical model, which is based on near-field driven charge generation by a Monte-Carlo approach and classical propagation. We furthermore clarify the role of the solvent in the surface composition of the nanoparticles in the interaction region. We find that upon injection of the nanoparticles into the vacuum, the alcoholic solvent evaporates on millisecond time scales, and that the generated ions originate predominantly from covalent bonds with the silica surface rather than from physisorbed solvent molecules. These findings have important implications for the development of future theoretical models of the strong-field ion emission from silica nanoparticles, and the application of near-field imaging and reaction dynamics of functional groups on isolated nanoparticles. Supplementary Information: The online version contains supplementary material available at 10.1140/epjd/s10053-022-00430-6.

3.
Sensors (Basel) ; 22(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35890948

ABSTRACT

Safety validation of automated driving functions is a major challenge that is partly tackled by means of simulation-based testing. The virtual validation approach always entails the modeling of automotive perception sensors and their environment. In the real world, these sensors are exposed to adverse influences by environmental conditions such as rain, fog, snow, etc. Therefore, such influences need to be reflected in the simulation models. In this publication, a novel data set is introduced and analyzed. This data set contains lidar data with synchronized reference measurements of weather conditions from a stationary long-term experiment. Recorded weather conditions comprise fog, rain, snow, and direct sunlight. The data are analyzed by pairing lidar values, such as the number of detections in the atmosphere, with weather parameters such as rain rate in mm/h. This results in expectation values, which can directly be utilized for stochastic modeling or model calibration and validation. The results show vast differences in the number of atmospheric detections, range distribution, and attenuation between the different sensors of the data set.

4.
Nat Commun ; 13(1): 962, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35181662

ABSTRACT

Photoconductive field sampling enables petahertz-domain optoelectronic applications that advance our understanding of light-matter interaction. Despite the growing importance of ultrafast photoconductive measurements, a rigorous model for connecting the microscopic electron dynamics to the macroscopic external signal is lacking. This has caused conflicting interpretations about the origin of macroscopic currents. Here, we present systematic experimental studies on the signal formation in gas-phase photoconductive sampling. Our theoretical model, based on the Ramo-Shockley-theorem, overcomes the previously introduced artificial separation into dipole and current contributions. Extensive numerical particle-in-cell-type simulations permit a quantitative comparison with experimental results and help to identify the roles of electron-neutral scattering and mean-field charge interactions. The results show that the heuristic models utilized so far are valid only in a limited range and are affected by macroscopic effects. Our approach can aid in the design of more sensitive and more efficient photoconductive devices.

5.
Science ; 375(6578): 285-290, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34990213

ABSTRACT

In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10-18 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse, we created a clock to time-resolve the electron dynamics and demonstrated control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter.

6.
Nat Commun ; 12(1): 3839, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34158493

ABSTRACT

Regarded as the most important ion in interstellar chemistry, the trihydrogen cation, [Formula: see text], plays a vital role in the formation of water and many complex organic molecules believed to be responsible for life in our universe. Apart from traditional plasma discharges, recent laboratory studies have focused on forming the trihydrogen cation from large organic molecules during their interactions with intense radiation and charged particles. In contrast, we present results on forming [Formula: see text] from bimolecular reactions that involve only an inorganic molecule, namely water, without the presence of any organic molecules to facilitate its formation. This generation of [Formula: see text] is enabled by "engineering" a suitable reaction environment comprising water-covered silica nanoparticles exposed to intense, femtosecond laser pulses. Similar, naturally-occurring, environments might exist in astrophysical settings where hydrated nanometer-sized dust particles are impacted by cosmic rays of charged particles or solar wind ions. Our results are a clear manifestation of how aerosolized nanoparticles in intense femtosecond laser fields can serve as a catalysts that enable exotic molecular entities to be produced via non-traditional routes.

7.
Phys Chem Chem Phys ; 22(5): 2704-2712, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31793561

ABSTRACT

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

8.
Nat Commun ; 10(1): 4655, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604937

ABSTRACT

Nanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we close this gap by introducing reaction nanoscopy based on three-dimensional momentum-resolved photoionization. The technique is demonstrated for the spatially selective proton generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO2 nanoparticles, resolving a pronounced variation across the particle surface. The results are modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie Monte-Carlo (M3C) calculations. Reaction nanoscopy is suited for a wide range of isolated nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles, clusters, and droplets.

SELECTION OF CITATIONS
SEARCH DETAIL
...