Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 135(2): 437-50, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23897985

ABSTRACT

We studied the impact of a catalyzed diesel particulate filter (DPF) on the toxicity of diesel exhaust. Rats inhaled exhaust from a Cummins ISM heavy-duty diesel engine, with and without DPF after-treatment, or HEPA-filtered air for 4h, on 1 day (single exposure) and 3 days (repeated exposures). Biological effects were assessed after 2h (single exposure) and 20h (single and repeated exposures) recovery in clean air. Concentrations of pollutants were (1) untreated exhaust (-DPF), nitric oxide (NO), 43 ppm; nitrogen dioxide (NO2), 4 ppm; carbon monoxide (CO), 6 ppm; hydrocarbons, 11 ppm; particles, 3.2×10(5)/cm(3), 60-70nm mode, 269 µg/m(3); (2) treated exhaust (+DPF), NO, 20 ppm; NO2, 16 ppm; CO, 1 ppm; hydrocarbons, 3 ppm; and particles, 4.4×10(5)/cm(3), 7-8nm mode, 2 µg/m(3). Single exposures to -DPF exhaust resulted in increased neutrophils, total protein and the cytokines, growth-related oncogene/keratinocyte chemoattractant, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1 in lung lavage fluid, as well as increased gene expression of interleukin-6, prostaglandin-endoperoxide synthase 2, metallothionein 2A, tumor necrosis factor-α, inducible nitric oxide synthase, glutathione S-transferase A1, heme oxygenase-1, superoxide dismutase 2, endothelin-1 (ET-1), and endothelin-converting enzyme-1 in the lung, and ET- 1 in the heart. Ratio of bigET-1 to ET-1 peptide increased in plasma in conjunction with a decrease in endothelial nitric oxide synthase gene expression in the lungs after exposure to diesel exhaust, suggesting endothelial dysfunction. Rather than reducing toxicity, +DPF exhaust resulted in heightened injury and inflammation, consistent with the 4-fold increase in NO2 concentration. The ratio of bigET-1 to ET-1 was similarly elevated after -DPF and +DPF exhaust exposures. Endothelial dysfunction, thus, appeared related to particle number deposited, rather than particle mass or NO2 concentration. The potential benefits of particulate matter reduction using a catalyzed DPF may be confounded by increase in NO2 emission and release of reactive ultrafine particles.


Subject(s)
Nitrogen Dioxide/toxicity , Vehicle Emissions , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid , Catalysis , Cytokines/blood , Cytokines/metabolism , Dinoprost/analogs & derivatives , Dinoprost/blood , Endothelins/metabolism , Particle Size , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...