Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Lancet Infect Dis ; 23(12): 1383-1394, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37660711

ABSTRACT

BACKGROUND: A vaccine that prevents cytomegalovirus (CMV) infection in women could reduce the incidence of congenital CMV infection, a major cause of neurodevelopmental disability. We aimed to assess the safety and efficacy of a replication-defective investigational CMV vaccine, V160, in CMV-seronegative women. METHODS: This phase 2b, randomised, double-blind, placebo-controlled study was conducted at 90 sites in seven countries (USA, Finland, Canada, Israel, Spain, Russia, and Australia). Eligible participants were generally healthy, CMV-seronegative, non-pregnant, 16-35-year-old women of childbearing potential with exposure to children aged 5 years or younger. Participants were randomly assigned using central randomisation via an interactive response technology system 1:1:1 to one of three groups: V160 three-dose regimen (V160 at day 1, month 2, and month 6), V160 two-dose regimen (V160 on day 1, placebo at month 2, and V160 at month 6), or placebo (saline solution at day 1, month 2, and month 6). The primary outcomes were the efficacy of three doses of V160 in reducing the incidence of primary CMV infection during the follow-up period starting 30 days after the last dose of vaccine using a fixed event rate design, and the safety and tolerability of the two-dose and three-dose V160 regimens. We planned to test the efficacy of a two-dose regimen of V160 in reducing the incidence of primary CMV infection only if the primary efficacy hypothesis was met. Analyses for the primary efficacy endpoint were performed on the per-protocol efficacy population; safety analyses included all randomly assigned participants who received study vaccine. The primary efficacy hypothesis was tested at prespecified interim and final analyses. The study was ongoing and efficacy data continued to accrue at the time of final testing of the primary efficacy hypothesis. Vaccine efficacy was re-estimated after final testing of the primary efficacy hypothesis based on all available efficacy data at end of study. This trial is registered at ClinicalTrials.gov (NCT03486834) and EudraCT (2017-004233-86) and is complete. FINDINGS: Between April 30, 2018, and Aug 30, 2019, 7458 participants were screened, of whom 2220 were randomly assigned to the V160 three-dose group (n=733), V160 two-dose group (n=733), or placebo group (n=734). A total of 523 participants in the V160 three-dose group and 519 in the placebo group were included in the final hypothesis testing. Of these, there were 11 cases of CMV infection in the V160 three-dose group and 20 cases in the placebo group. The vaccine efficacy for the V160 three-dose group was 44·6% (95% CI -15·2 to 74·8) at the final testing of the primary efficacy hypothesis, a result corresponding to failure to demonstrate the primary efficacy hypothesis. On the basis of this result, the study was terminated for futility. The re-estimate of vaccine efficacy for the V160 three-dose group based on all available efficacy data at end of study (556 participants in the V160 three-dose group and 543 in the placebo group) was 42·4% (95% CI -13·5 to 71·1). A total of 728 participants in the V160 three-dose group, 729 in the V160 two-dose group, and 732 in the placebo group were included in the safety analyses. The most common solicited injection-site adverse event was injection-site pain (680 [93%] in the V160 three-dose group, 659 [90%] in the V160 two-dose group, and 232 [32%] in the placebo group). The most common solicited systemic adverse event was fatigue (457 [63%] in the V160 three-dose group, 461 [63%] in the V160 two-dose group, and 357 [49%] in the placebo group). No vaccine-related serious adverse events or deaths were reported. INTERPRETATION: V160 was generally well tolerated and immunogenic; however, three doses of the vaccine did not reduce the incidence of primary CMV infection in CMV-seronegative women compared with placebo. This study provides insights into the design of future CMV vaccine efficacy trials, particularly for the identification of CMV infection using molecular assays. FUNDING: Merck Sharp & Dohme, a subsidiary of Merck & Co, Rahway, NJ, USA (MSD).


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus Vaccines , Vaccines , Child , Humans , Female , Adolescent , Young Adult , Adult , Cytomegalovirus , Immunization , Cytomegalovirus Infections/prevention & control , Double-Blind Method , Immunogenicity, Vaccine
2.
Vaccines (Basel) ; 11(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37766177

ABSTRACT

In vaccine efficacy trials, inaccurate counting of infection cases leads to systematic under-estimation-or "dilution"-of vaccine efficacy. In particular, if a sufficient fraction of observed cases are false positives, apparent efficacy will be greatly reduced, leading to unwarranted no-go decisions in vaccine development. Here, we propose a range of replicate testing strategies to address this problem, considering the additional challenge of uncertainty in both infection incidence and diagnostic assay specificity/sensitivity. A strategy that counts an infection case only if a majority of replicate assays return a positive result can substantially reduce efficacy dilution for assays with non-systematic (i.e., "random") errors. We also find that a cost-effective variant of this strategy, using confirmatory assays only if an initial assay is positive, yields a comparable benefit. In clinical trials, where frequent longitudinal samples are needed to detect short-lived infections, this "confirmatory majority rule" strategy can prevent the accumulation of false positives from magnifying efficacy dilution. When widespread public health screening is used for viruses, such as SARS-CoV-2, that have non-differentiating features or may be asymptomatic, these strategies can also serve to reduce unneeded isolations caused by false positives.

3.
Sci Transl Med ; 15(684): eabn2038, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812345

ABSTRACT

Antiretroviral therapy inhibits HIV-1 replication but is not curative due to establishment of a persistent reservoir after virus integration into the host genome. Reservoir reduction is therefore an important HIV-1 cure strategy. Some HIV-1 nonnucleoside reverse transcriptase inhibitors induce HIV-1 selective cytotoxicity in vitro but require concentrations far exceeding approved dosages. Focusing on this secondary activity, we found bifunctional compounds with HIV-1-infected cell kill potency at clinically achievable concentrations. These targeted activator of cell kill (TACK) molecules bind the reverse transcriptase-p66 domain of monomeric Gag-Pol and act as allosteric modulators to accelerate dimerization, resulting in HIV-1+ cell death through premature intracellular viral protease activation. TACK molecules retain potent antiviral activity and selectively eliminate infected CD4+ T cells isolated from people living with HIV-1, supporting an immune-independent clearance strategy.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , Antiviral Agents/therapeutic use , Apoptosis , Cell Death , CD4-Positive T-Lymphocytes , Virus Replication
4.
Hepatol Commun ; 7(3): e0031, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36790337

ABSTRACT

BACKGROUND: Approximately 3.5 million children and adolescents worldwide are chronically infected with HCV. This study uses pharmacokinetic modeling to identify pediatric doses of elbasvir/grazoprevir (EBR/GZR) that achieve plasma concentrations similar to those seen in adults receiving the approved fixed-dose combination regimen of EBR/GZR. PATIENTS AND METHODS: We conducted a nonrandomized, single-arm, multicenter, open-label phase 2b trial in children and adolescents aged 3 to <18 years with chronic HCV genotype 1 or 4 infection (NCT03379506). Pharmacokinetic data were used to bridge efficacy and safety data from adults to children in a stepwise (oldest to youngest) manner. A total of 57 participants were enrolled: cohort 1 (aged 12 to <18 y), n=22; cohort 2 (aged 7 to <12 y), n=17; and cohort 3 (aged 3 to <7 y), n=18. RESULTS: Steady-state plasma exposures were achieved by week 4 for EBR and GZR in all cohorts and daily dosing achieved geometric mean steady-state area under the concentration-time curve at 0-24 hours that fell within comparability bounds established for adults. All participants achieved sustained virologic response 12 weeks after completing treatment (ie, undetectable HCV RNA 12 wk following completion of treatment). Headache (n=4), fatigue (n=4), and nausea (n=2) were the most common treatment-related adverse events (all mild or moderate); no participant discontinued because of an adverse event. CONCLUSIONS: Pediatric EBR/GZR pharmacokinetic models were successfully developed based on complex adult population pharmacokinetic models. At appropriate age-related doses, EBR/GZR is safe and effective in pediatric and adolescent participants with HCV infection.


Subject(s)
Antiviral Agents , Hepatitis C , Adult , Adolescent , Humans , Child , Antiviral Agents/adverse effects , Hepacivirus/genetics , Quinoxalines/adverse effects , Genotype , Hepatitis C/drug therapy
5.
J Infect Dis ; 224(7): 1209-1218, 2021 10 13.
Article in English | MEDLINE | ID: mdl-32147687

ABSTRACT

BACKGROUND: Evaluations of human immunodeficiency virus (HIV) curative interventions require reliable and efficient quantification of replication-competent latent reservoirs. The "classic" quantitative viral outgrowth assay (QVOA) has been regarded as the reference standard, although prohibitively resource and labor intensive. We compared 6 "next-generation" viral outgrowth assays, using polymerase chain reaction or ultrasensitive p24 to assess their suitability as scalable proxies for QVOA. METHODS: Next-generation QVOAs were compared with classic QVOA using single leukapheresis-derived samples from 5 antiretroviral therapy-suppressed HIV-infected participants and 1 HIV-uninfected control; each laboratory tested blinded batches of 3 frozen and 1 fresh sample. Markov chain Monte Carlo methods estimated extra-Poisson variation at aliquot, batch, and laboratory levels. Models also estimated the effect of testing frozen versus fresh samples. RESULTS: Next-generation QVOAs had similar estimates of variation to QVOA. Assays with ultrasensitive readout reported higher infectious units per million values than classic QVOA. Within-batch testing had 2.5-fold extra-Poisson variation (95% credible interval [CI], 2.1-3.5-fold) for next-generation assays. Between-laboratory variation increased extra-Poisson variation to 3.4-fold (95% CI, 2.6-5.4-fold). Frozen storage did not substantially alter infectious units per million values (-18%; 95% CI, -52% to 39%). CONCLUSIONS: The data offer cautious support for use of next-generation QVOAs as proxies for more laborious QVOA, while providing greater sensitivities and dynamic ranges. Measurement of latent reservoirs in eradication strategies would benefit from high throughput and scalable assays.


Subject(s)
HIV Infections , HIV-1/genetics , High-Throughput Nucleotide Sequencing/methods , Virus Latency , Virus Replication , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes , Case-Control Studies , HIV Infections/drug therapy , HIV Infections/virology , HIV Reverse Transcriptase , HIV-1/isolation & purification , Humans , Leukapheresis , Viral Load , Virus Replication/physiology
6.
Lancet HIV ; 7(9): e602-e610, 2020 09.
Article in English | MEDLINE | ID: mdl-32649866

ABSTRACT

BACKGROUND: Allogeneic blood or marrow transplantation (alloBMT) is a potentially life-saving treatment for individuals with HIV and haematological malignancies; challenges include identifying donors and maintaining antiretroviral therapy (ART). The objectives of our study were to investigate interventions to expand donor options and to prevent ART interruptions for patients with HIV in need of alloBMT. METHODS: This single-arm, interventional trial took place at the Johns Hopkins Sidney Kimmel Comprehensive Cancer Center (Baltimore, MD, USA). Individuals with HIV who were at least 18 years of age and referred for alloBMT for a standard clinical indication were eligible. The only exclusion criterion was a history of documented resistance to enfuvirtide. We used post-transplant cyclophosphamide as graft-versus-host disease (GVHD) prophylaxis to expand donor options and an optimised ART strategy of avoiding pharmacoenhancers and adding subcutaneous enfuvirtide during post-transplant cyclophosphamide and during oral medication intolerance. Our primary outcome was the proportion of participants who maintained ART through day 60 after alloBMT. We measured the HIV latent reservoir using a quantitative viral outgrowth assay. This study is registered on ClinicalTrials.gov, NCT01836068. FINDINGS: Between June 1, 2013, and August 27, 2015, nine patients who were referred for transplant provided consent. Two patients had relapsed malignancy before donor searches were initiated. Seven patients had suitable donors identified (two matched sibling, two matched unrelated, two haploidentical, and one single-antigen mismatched unrelated) and proceeded to alloBMT. All patients maintained ART through day 60 and required ART changes (median 1, range 1-3) in the first 90 days. One patient stopped ART and developed HIV rebound with grade 4 meningoencephalitis at day 146. Among six patients who underwent alloBMT and had longitudinal measurements available, the HIV latent reservoir was not detected post-alloBMT in four patients with more than 95% donor chimerism, consistent with a 2·06-2·54 log10 reduction in the HIV latent reservoir. In the two patients with less than 95% donor chimerism, the HIV latent reservoir remained stable. INTERPRETATION: By using post-transplant cyclophosphamide as GVHD prophylaxis, we successfully expanded alloBMT donor options for patients with HIV. Continuing ART with a regimen that includes enfuvirtide post-alloBMT was safe, but life-threatening viral rebound can occur with ART interruption. FUNDING: amfAR (the Foundation for AIDS Research), Johns Hopkins University Center for AIDS Research, and National Cancer Institute.


Subject(s)
Bone Marrow Transplantation , Cyclophosphamide/therapeutic use , HIV Infections/complications , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Adult , Antiretroviral Therapy, Highly Active , Bone Marrow Transplantation/adverse effects , Bone Marrow Transplantation/methods , Combined Modality Therapy , Cyclophosphamide/administration & dosage , Cyclophosphamide/adverse effects , Feasibility Studies , Female , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , HIV Infections/drug therapy , Humans , Male , Middle Aged , Transplantation Conditioning , Transplantation, Homologous , Treatment Outcome , Viral Load
7.
PLoS Comput Biol ; 15(4): e1006849, 2019 04.
Article in English | MEDLINE | ID: mdl-30978183

ABSTRACT

Quantitative viral outgrowth assays (QVOA) use limiting dilutions of CD4+ T cells to measure the size of the latent HIV-1 reservoir, a major obstacle to curing HIV-1. Efforts to reduce the reservoir require assays that can reliably quantify its size in blood and tissues. Although QVOA is regarded as a "gold standard" for reservoir measurement, little is known about its accuracy and precision or about how cell storage conditions or laboratory-specific practices affect results. Owing to this lack of knowledge, confidence intervals around reservoir size estimates-as well as judgments of the ability of therapeutic interventions to alter the size of the replication-competent but transcriptionally inactive latent reservoir-rely on theoretical statistical assumptions about dilution assays. To address this gap, we have carried out a Bayesian statistical analysis of QVOA reliability on 75 split samples of peripheral blood mononuclear cells (PBMC) from 5 antiretroviral therapy (ART)-suppressed participants, measured using four different QVOAs at separate labs, estimating assay precision and the effect of frozen cell storage on estimated reservoir size. We found that typical assay results are expected to differ from the true value by a factor of 1.6 to 1.9 up or down. Systematic assay differences comprised a 24-fold range between the assays with highest and lowest scales, likely reflecting differences in viral outgrowth readout and input cell stimulation protocols. We also found that controlled-rate freezing and storage of samples did not cause substantial differences in QVOA compared to use of fresh cells (95% probability of < 2-fold change), supporting continued use of frozen storage to allow transport and batched analysis of samples. Finally, we simulated an early-phase clinical trial to demonstrate that batched analysis of pre- and post-therapy samples may increase power to detect a three-fold reservoir reduction by 15 to 24 percentage points.


Subject(s)
HIV Infections/virology , HIV-1 , Viral Load/methods , Virus Latency , Anti-HIV Agents/therapeutic use , Bayes Theorem , CD4-Positive T-Lymphocytes/virology , Computational Biology , Computer Simulation , HIV Infections/drug therapy , HIV-1/physiology , Humans , Leukocytes, Mononuclear/virology , Likelihood Functions , Markov Chains , Monte Carlo Method , Reproducibility of Results , Viral Load/statistics & numerical data , Virus Replication
8.
Nat Genet ; 50(10): 1399-1411, 2018 10.
Article in English | MEDLINE | ID: mdl-30262818

ABSTRACT

Outcomes of anticancer therapy vary dramatically among patients due to diverse genetic and molecular backgrounds, highlighting extensive intertumoral heterogeneity. The fundamental tenet of precision oncology defines molecular characterization of tumors to guide optimal patient-tailored therapy. Towards this goal, we have established a compilation of pharmacological landscapes of 462 patient-derived tumor cells (PDCs) across 14 cancer types, together with genomic and transcriptomic profiling in 385 of these tumors. Compared with the traditional long-term cultured cancer cell line models, PDCs recapitulate the molecular properties and biology of the diseases more precisely. Here, we provide insights into dynamic pharmacogenomic associations, including molecular determinants that elicit therapeutic resistance to EGFR inhibitors, and the potential repurposing of ibrutinib (currently used in hematological malignancies) for EGFR-specific therapy in gliomas. Lastly, we present a potential implementation of PDC-derived drug sensitivities for the prediction of clinical response to targeted therapeutics using retrospective clinical studies.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Pharmacogenetics/methods , Precision Medicine/methods , Antineoplastic Agents/classification , Antineoplastic Agents/isolation & purification , Biomarkers, Pharmacological/analysis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Cell Lineage/drug effects , Cell Lineage/genetics , Drug Screening Assays, Antitumor , Feasibility Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Medical Oncology/methods , Neoplasms/pathology , Panobinostat/therapeutic use , Patient-Centered Care/methods , Primary Cell Culture/methods , Tumor Cells, Cultured
9.
Immunol Rev ; 285(1): 9-25, 2018 09.
Article in English | MEDLINE | ID: mdl-30129208

ABSTRACT

The odds of living a long and healthy life with HIV infection have dramatically improved with the advent of combination antiretroviral therapy. Along with the early development and clinical trials of these drugs, and new field of research emerged called viral dynamics, which uses mathematical models to interpret and predict the time-course of viral levels during infection and how they are altered by treatment. In this review, we summarize the contributions that virus dynamics models have made to understanding the pathophysiology of infection and to designing effective therapies. This includes studies of the multiphasic decay of viral load when antiretroviral therapy is given, the evolution of drug resistance, the long-term persistence latently infected cells, and the rebound of viremia when drugs are stopped. We additionally discuss new work applying viral dynamics models to new classes of investigational treatment for HIV, including latency-reversing agents and immunotherapy.


Subject(s)
HIV Infections/therapy , HIV/physiology , Immunotherapy/methods , Models, Biological , Viremia/therapy , Virus Latency , Animals , Anti-Retroviral Agents/therapeutic use , Drug Resistance , HIV Infections/immunology , Humans , Treatment Outcome , Viral Load , Viremia/immunology , Virus Activation , Withholding Treatment
10.
PLoS Comput Biol ; 14(2): e1005947, 2018 02.
Article in English | MEDLINE | ID: mdl-29447150

ABSTRACT

Viral infections are one of the major causes of death worldwide, with HIV infection alone resulting in over 1.2 million casualties per year. Antiviral drugs are now being administered for a variety of viral infections, including HIV, hepatitis B and C, and influenza. These therapies target a specific phase of the virus's life cycle, yet their ultimate success depends on a variety of factors, such as adherence to a prescribed regimen and the emergence of viral drug resistance. The epidemiology and evolution of drug resistance have been extensively characterized, and it is generally assumed that drug resistance arises from mutations that alter the virus's susceptibility to the direct action of the drug. In this paper, we consider the possibility that a virus population can evolve towards synchronizing its life cycle with the pattern of drug therapy. The periodicity of the drug treatment could then allow for a virus strain whose life cycle length is a multiple of the dosing interval to replicate only when the concentration of the drug is lowest. This process, referred to as "drug tolerance by synchronization", could allow the virus population to maximize its overall fitness without having to alter drug binding or complete its life cycle in the drug's presence. We use mathematical models and stochastic simulations to show that life cycle synchronization can indeed be a mechanism of viral drug tolerance. We show that this effect is more likely to occur when the variability in both viral life cycle and drug dose timing are low. More generally, we find that in the presence of periodic drug levels, time-averaged calculations of viral fitness do not accurately predict drug levels needed to eradicate infection, even if there is no synchronization. We derive an analytical expression for viral fitness that is sufficient to explain the drug-pattern-dependent survival of strains with any life cycle length. We discuss the implications of these findings for clinically relevant antiviral strategies.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/genetics , Virus Replication/drug effects , Anti-HIV Agents/pharmacology , Basic Reproduction Number , Computational Biology , Computer Simulation , Drug Tolerance , Genotype , Humans , Models, Theoretical , Phenotype , Stochastic Processes , Virus Diseases/drug therapy
11.
Nature ; 551(7681): E6-E9, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29168805
13.
J Exp Med ; 214(4): 959-972, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28341641

ABSTRACT

A latent reservoir for HIV-1 in resting CD4+ T lymphocytes precludes cure. Mechanisms underlying reservoir stability are unclear. Recent studies suggest an unexpected degree of infected cell proliferation in vivo. T cell activation drives proliferation but also reverses latency, resulting in productive infection that generally leads to cell death. In this study, we show that latently infected cells can proliferate in response to mitogens without producing virus, generating progeny cells that can release infectious virus. Thus, assays relying on one round of activation underestimate reservoir size. Sequencing of independent clonal isolates of replication-competent virus revealed that 57% had env sequences identical to other isolates from the same patient. Identity was confirmed by full-genome sequencing and was not attributable to limited viral diversity. Phylogenetic and statistical analysis suggested that identical sequences arose from in vivo proliferation of infected cells, rather than infection of multiple cells by a dominant viral species. The possibility that much of the reservoir arises by cell proliferation presents challenges to cure.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV-1/physiology , Lymphocyte Activation , Virus Replication , Genome, Viral , HIV-1/genetics , Humans
14.
Biochim Biophys Acta Rev Cancer ; 1867(2): 69-83, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27923679

ABSTRACT

Amidst the growing literature on cancer genomics and intratumor heterogeneity, essential principles in evolutionary biology recur time and time again. Here we use these principles to guide the reader through major advances in cancer research, highlighting issues of "hit hard, hit early" treatment strategies, drug resistance, and metastasis. We distinguish between two frameworks for understanding heterogeneous tumors, both of which can inform treatment strategies: (1) The tumor as diverse ecosystem, a Darwinian population of sometimes-competing, sometimes-cooperating cells; (2) The tumor as tightly integrated, self-regulating organ, which may hijack developmental signals to restore functional heterogeneity after treatment. While the first framework dominates literature on cancer evolution, the second framework enjoys support as well. Throughout this review, we illustrate how mathematical models inform understanding of tumor progression and treatment outcomes. Connecting models to genomic data faces computational and technical hurdles, but high-throughput single-cell technologies show promise to clear these hurdles. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.


Subject(s)
Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/genetics , Evolution, Molecular , Genetic Fitness , Neoplasms/genetics , Tumor Microenvironment , Adaptation, Physiological , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Heredity , Humans , Models, Genetic , Mutation , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Pedigree , Phenotype , Signal Transduction/genetics , Time Factors
16.
Nat Genet ; 48(7): 768-76, 2016 07.
Article in English | MEDLINE | ID: mdl-27270107

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. To better understand how GBM evolves, we analyzed longitudinal genomic and transcriptomic data from 114 patients. The analysis shows a highly branched evolutionary pattern in which 63% of patients experience expression-based subtype changes. The branching pattern, together with estimates of evolutionary rate, suggests that relapse-associated clones typically existed years before diagnosis. Fifteen percent of tumors present hypermutation at relapse in highly expressed genes, with a clear mutational signature. We find that 11% of recurrence tumors harbor mutations in LTBP4, which encodes a protein binding to TGF-ß. Silencing LTBP4 in GBM cells leads to suppression of TGF-ß activity and decreased cell proliferation. In recurrent GBM with wild-type IDH1, high LTBP4 expression is associated with worse prognosis, highlighting the TGF-ß pathway as a potential therapeutic target in GBM.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Clonal Evolution/genetics , Dacarbazine/analogs & derivatives , Glioblastoma/pathology , Mutation/genetics , Neoplasm Recurrence, Local/pathology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Proliferation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dacarbazine/therapeutic use , Gene Expression Regulation, Neoplastic , Genomics , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Latent TGF-beta Binding Proteins/genetics , Longitudinal Studies , Neoplasm Grading , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Survival Rate , Temozolomide , Transcriptome , Transforming Growth Factor beta/genetics , Tumor Suppressor Proteins/genetics
17.
Cell Syst ; 3(1): 83-94, 2016 07.
Article in English | MEDLINE | ID: mdl-27345159

ABSTRACT

Meiotic recombination is a fundamental evolutionary process driving diversity in eukaryotes. In mammals, recombination is known to occur preferentially at specific genomic regions. Using topological data analysis (TDA), a branch of applied topology that extracts global features from large data sets, we developed an efficient method for mapping recombination at fine scales. When compared to standard linkage-based methods, TDA can deal with a larger number of SNPs and genomes without incurring prohibitive computational costs. We applied TDA to 1,000 Genomes Project data and constructed high-resolution whole-genome recombination maps of seven human populations. Our analysis shows that recombination is generally under-represented within transcription start sites. However, the binding sites of specific transcription factors are enriched for sites of recombination. These include transcription factors that regulate the expression of meiosis- and gametogenesis-specific genes, cell cycle progression, and differentiation blockage. Additionally, our analysis identifies an enrichment for sites of recombination at repeat-derived loci matched by piwi-interacting RNAs.


Subject(s)
Genome, Human , Chromosome Mapping , Genetic Linkage , Genome-Wide Association Study , Homologous Recombination , Humans , Meiosis , Polymorphism, Single Nucleotide
18.
PLoS Pathog ; 12(4): e1005535, 2016 04.
Article in English | MEDLINE | ID: mdl-27119536

ABSTRACT

Monitoring the efficacy of novel reservoir-reducing treatments for HIV is challenging. The limited ability to sample and quantify latent infection means that supervised antiretroviral therapy (ART) interruption studies are generally required. Here we introduce a set of mathematical and statistical modeling tools to aid in the design and interpretation of ART-interruption trials. We show how the likely size of the remaining reservoir can be updated in real-time as patients continue off treatment, by combining the output of laboratory assays with insights from models of reservoir dynamics and rebound. We design an optimal schedule for viral load sampling during interruption, whereby the frequency of follow-up can be decreased as patients continue off ART without rebound. While this scheme can minimize costs when the chance of rebound between visits is low, we find that the reservoir will be almost completely reseeded before rebound is detected unless sampling occurs at least every two weeks and the most sensitive viral load assays are used. We use simulated data to predict the clinical trial size needed to estimate treatment effects in the face of highly variable patient outcomes and imperfect reservoir assays. Our findings suggest that large numbers of patients-between 40 and 150-will be necessary to reliably estimate the reservoir-reducing potential of a new therapy and to compare this across interventions. As an example, we apply these methods to the two "Boston patients", recipients of allogeneic hematopoietic stem cell transplants who experienced large reductions in latent infection and underwent ART-interruption. We argue that the timing of viral rebound was not particularly surprising given the information available before treatment cessation. Additionally, we show how other clinical data can be used to estimate the relative contribution that remaining HIV+ cells in the recipient versus newly infected cells from the donor made to the residual reservoir that eventually caused rebound. Together, these tools will aid HIV researchers in the evaluating new potentially-curative strategies that target the latent reservoir.


Subject(s)
Anti-HIV Agents/administration & dosage , HIV Infections/drug therapy , HIV Infections/virology , Models, Theoretical , Virus Latency/drug effects , Adult , Bayes Theorem , Female , Humans , Male , Viral Load/drug effects
19.
Methods Mol Biol ; 1354: 239-53, 2016.
Article in English | MEDLINE | ID: mdl-26714716

ABSTRACT

Combination antiretroviral therapy (cART) can reduce HIV-1 viremia to clinically undetectable levels. However, replication competent virus persists in a long-lived latent reservoir in resting, memory CD4(+) T cells. The latent reservoir in resting CD4(+) T cells is the major barrier to curing HIV-1 infection. The recent case of the Berlin patient has suggested that it may be possible to cure HIV-1 infection in certain situations. As efforts to cure HIV-1 infection progress, it will become critical to measure the latent reservoir in patients participating in clinical trials of eradication strategies. Our laboratory has developed a limiting dilution virus outgrowth assay that can be used to demonstrate the presence and persistence of latent HIV-1 in patients. Here we describe both the original and a simplified version of the quantitative virus outgrowth assay (QVOA) to measure the frequency of latently infected resting CD4(+) T cells with replication competent provirus in patients on suppressive cART.


Subject(s)
Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/virology , Coculture Techniques/methods , HIV-1/physiology , Virus Latency , Cells, Cultured , HIV Infections/drug therapy , HIV-1/drug effects , Humans , Virus Cultivation/methods , Virus Latency/drug effects
20.
Open Forum Infect Dis ; 2(4): ofv123, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26478893

ABSTRACT

Limiting dilution assays are widely used in infectious disease research. These assays are crucial for current human immunodeficiency virus (HIV)-1 cure research in particular. In this study, we offer new tools to help investigators design and analyze dilution assays based on their specific research needs. Limiting dilution assays are commonly used to measure the extent of infection, and in the context of HIV they represent an essential tool for studying latency and potential curative strategies. Yet standard assay designs may not discern whether an intervention reduces an already miniscule latent infection. This review addresses challenges arising in this setting and in the general use of dilution assays. We illustrate the major statistical method for estimating frequency of infectious units from assay results, and we offer an online tool for computing this estimate. We recommend a procedure for customizing assay design to achieve desired sensitivity and precision goals, subject to experimental constraints. We consider experiments in which no viral outgrowth is observed and explain how using alternatives to viral outgrowth may make measurement of HIV latency more efficient. Finally, we discuss how biological complications, such as probabilistic growth of small infections, alter interpretations of experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...