Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 11: 1322819, 2024.
Article in English | MEDLINE | ID: mdl-38313063

ABSTRACT

Introduction: The nematode Gurltia paralysans is a neglected angio-neurotropic parasite causing chronic meningomyelitis in domestic cats (Felis catus) as well as wild felids of the genus Leopardus in South America. Adult G. paralysans nematodes parasitize the leptomeningeal veins of the subarachnoid space and/or meningeal veins of the spinal cord parenchyma. The geographic range of G. paralysans encompasses rural and peri-urban regions of Chile, Argentina, Uruguay, Colombia and Brazil. Methods: This case report presents clinical and pathological findings of a G. paralysans-infected cat suffering from severe thrombophlebitis and meningomyelitis resulting in ambulatory paraparesis. Neurological examination of affected cat localized the lesions at the thoracolumbar (T3-L3) and lumbosacral (L4-Cd4) segments. Molecular and morphological characteristics of extracted nematodes from parasitized spinal cord veins confirmed G. paralysans. Additionally, data obtained from a questionnaire answered by cat owners of 12 past feline gurltiosis cases (2014-2015) were here analyzed. Questionnaire collected data on age, gender, geographic location, type of food, hunting behavior, type of prey, and other epidemiological features of G. paralysans-infected cats. Results and Discussion: Data revealed that the majority of cats originated from rural settlements thereby showing outdoor life styles with hunting/predatory behaviors, being in close contact to wild life [i.e. gastropods, amphibians, reptiles, rodents, birds, and wild felids (Leopardus guinia)] and with minimal veterinary assistance. Overall, this neglected angio-neurotropic G. paralysans nematode still represents an important etiology of severe thrombophlebitis and meningomyelitis of domestic cats living in endemic rural areas with high biodiversity of definitive hosts (DH), intermediary (IH), and paratenic hosts (PH). The intention of this study is to generate awareness among veterinary surgeons as well as biologists on this neglected feline neuroparasitosis not only affecting domestic cats but also endangered wild felid species of the genus Leopardus within the South American continent.

2.
Bioscience ; 73(6): 441-452, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37397836

ABSTRACT

Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists' human sensory and cognitive systems during storms.

3.
ACS Earth Space Chem ; 7(5): 960-971, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37228623

ABSTRACT

Selenium (Se) is both a micronutrient required for most life and an element of environmental concern due to its toxicity at high concentrations, and both bioavailability and toxicity are largely influenced by the Se oxidation state. Environmentally relevant fungi have been shown to aerobically reduce Se(IV) and Se(VI), the generally more toxic and bioavailable Se forms. The goal of this study was to shed light on fungal Se(IV) reduction pathways and biotransformation products over time and fungal growth stages. Two Ascomycete fungi were grown with moderate (0.1 mM) and high (0.5 mM) Se(IV) concentrations in batch culture over 1 month. Fungal growth was measured throughout the experiments, and aqueous and biomass-associated Se was quantified and speciated using analytical geochemistry, transmission electron microscopy (TEM), and synchrotron-based X-ray absorption spectroscopy (XAS) approaches. The results show that Se transformation products were largely Se(0) nanoparticles, with a smaller proportion of volatile, methylated Se compounds and Se-containing amino acids. Interestingly, the relative proportions of these products were consistent throughout all fungal growth stages, and the products appeared stable over time even as growth and Se(IV) concentration declined. This time-series experiment showing different biotransformation products throughout the different growth phases suggests that multiple mechanisms are responsible for Se detoxification, but some of these mechanisms might be independent of Se presence and serve other cellular functions. Knowing and predicting fungal Se transformation products has important implications for environmental and biological health as well as for biotechnology applications such as bioremediation, nanobiosensors, and chemotherapeutic agents.

4.
Chemosphere ; 327: 138467, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36966934

ABSTRACT

Naturally occurring manganese (Mn) oxide minerals often form by microbial Mn(II) oxidation, resulting in nanocrystalline Mn(III/IV) oxide phases with high reactivity that can influence the uptake and release of many metals (e.g., Ni, Cu, Co, and Zn). During formation, the structure and composition of biogenic Mn oxides can be altered in the presence of other metals, which in turn affects the minerals' ability to bind these metals. These processes are further influenced by the chemistry of the aqueous environment and the type and physiology of microorganisms involved. Conditions extending to environments that typify mining and industrial wastewaters (e.g., increased salt content, low nutrient, and high metal concentrations) have not been well investigated thus limiting the understanding of metal interactions with biogenic Mn oxides. By integrating geochemistry, microscopic, and spectroscopic techniques, we examined the capacity of Mn oxides produced by the Mn(II)-oxidizing Ascomycete fungus Periconia sp. SMF1 isolated from the Minnesota Soudan Mine to remove the metal co-contaminant Co(II) from synthetic waters that are representative of mining wastewaters currently undergoing remediation efforts. We compared two different applied remediation strategies under the same conditions: coprecipitation of Co with mycogenic Mn oxides versus adsorption of Co with pre-formed fungal Mn oxides. Co(II) was effectively removed from solution by fungal Mn oxides through two different mechanisms: incorporation into, and adsorption onto, Mn oxides. These mechanisms were similar for both remediation strategies, indicating the general effectiveness of Co(II) removal by these oxides. The mycogenic Mn oxides were primarily a nanoparticulate, poorly-crystalline birnessite-like phases with slight differences depending on the chemical conditions during formation. The relatively fast and complete removal of aqueous Co(II) during biomineralization as well as the subsequent structural incorporation of Co into the Mn oxide structure illustrated a sustainable cycle capable of continuously remediating Co(II) from metal-polluted environments.


Subject(s)
Ascomycota , Wastewater , Oxides/chemistry , Manganese Compounds/chemistry , Oxidation-Reduction , Metals , Minerals , Ascomycota/metabolism , Mining , Adsorption
5.
Environ Sci Process Impacts ; 24(9): 1360-1382, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-35661843

ABSTRACT

Coupled abiotic and biotic processes in the hyporheic zone, where surface water and groundwater mix, play a critical role in the biogeochemical cycling of carbon, nutrients, and trace elements in streams and wetlands. Dynamic hydrologic conditions and anthropogenic pollution can impact redox gradients and biogeochemical response, although few studies examine the resulting hydrobiogeochemical interactions generated within the hyporheic zone. This study examines the effect of hyporheic flux dynamics and anthropogenic sulfate loading on the biogeochemistry of a riparian wetland and stream system. The hydrologic gradient as well as sediment, surface water, and porewater geochemistry chemistry was characterized at multiple points throughout the 2017 spring-summer-fall season at a sulfate-impacted stream flanked by wetlands in northern Minnesota. Results show that organic-rich sediments largely buffer the geochemical responses to brief or low magnitude changes in hydrologic gradient, but sustained or higher magnitude fluxes may variably alter the redox regime and, ultimately, the environmental geochemistry. This has implications for a changing climate that is expected to dramatically alter the hydrological cycle. Further, increased sulfate loading and dissolved or adsorbed ferric iron complexes in the hyporheic zone may induce a cryptic sulfur cycle linked to iron and carbon cycling, as indicated by the abundance of intermediate valence sulfur compounds (e.g., polysulfide, elemental sulfur, thiosulfate) throughout the anoxic wetland and stream-channel sediment column. The observed deviation from a classical redox tower coupled with potential changes in hydraulic gradient in these organic-rich wetland and stream hyporheic zones has implications for nutrient, trace element, and greenhouse gas fluxes into surface water and groundwater, ultimately influencing water quality and global climate.


Subject(s)
Greenhouse Gases , Groundwater , Trace Elements , Carbon/chemistry , Ecosystem , Fresh Water , Groundwater/chemistry , Iron , Rivers/chemistry , Sulfates , Sulfur , Thiosulfates , Wetlands
6.
Pathogens ; 10(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34578227

ABSTRACT

Gurltia paralysans and Aelurostrongylus abstrusus are neglected metastrongyloid nematode species which infect domestic and wild cats in South American countries and in Chile, but no epidemiological studies on concomitant infections have been conducted in Chile so far. The aim of this study was not only to evaluate the occurrence of concomitant infections, but also to identify epidemiological risk factors associated with of G. paralysans and A. abstrusus infections in urban domestic cats (Felis catus) from Southern Chile. Blood samples from clinically healthy domestic cats from three cities of Southern Chile-Temuco, Valdivia, and Puerto Montt-were analyzed by an experimental semi-nested PCR protocol. A total of 171 apparently healthy domestic cats in Temuco (n = 68), Valdivia (n = 50), and Puerto Montt (n = 53) were sampled and analyzed. A total of 93 domestic cats (54.4%) were positive for G. paralysans, and 34 (19.9%) were positive for A. abstrusus infections. From those animals, 34 (19.9%) were co-infected. Cats positive with G. paralysans were found in all three cities; 47.2% in Puerto Montt, 48% in Valdivia, and 64.7% in Temuco. Levels of infection for A. abstrusus in the population under study were 4% (Valdivia), 10% (Puerto Montt), and 32.4% (Temuco). The present large-scale epidemiological study confirmed the presence of these neglected nematodes in domestic cat populations in Southern Chile, and described the possible risk factors associated with feline gurltiosis and aelurostrongylosis.

7.
Front Microbiol ; 11: 2105, 2020.
Article in English | MEDLINE | ID: mdl-33013769

ABSTRACT

Selenium (Se) is an essential element for most organisms yet can cause severe negative biological consequences at elevated levels. The oxidized forms of Se, selenate [Se(VI)] and selenite [Se(IV)], are more mobile, toxic, and bioavailable than the reduced forms of Se such as volatile or solid phases. Thus, selenate and selenite pose a greater threat to ecosystems and human health. As current Se remediation technologies have varying efficiencies and costs, novel strategies to remove elevated Se levels from environments impacted by anthropogenic activities are desirable. Some common soil fungi quickly remove Se (IV and VI) from solution by aerobic reduction to solid or volatile forms. Here, we perform bench-scale culture experiments of two Se-reducing Ascomycota to determine their Se removal capacity in growth media conditions containing either Se(IV) or Se(VI) as well as in Se-containing municipal (∼25 µg/L Se) and industrial (∼2000 µg/L Se) wastewaters. Dissolved Se was measured throughout the experiments to assess Se concentration and removal rates. Additionally, solid-associated Se was quantified at the end of each experiment to determine the amount of Se removed to solid phases (e.g., Se(0) nanoparticles, biomass-adsorbed Se, or internal organic selenoproteins). Results show that under optimal conditions, fungi more efficiently remove Se(IV) from solution compared to Se(VI). Additionally, both fungi remove a higher percentage of Se from the filtered municipal wastewater compared to the industrial wastewater, though cultures in industrial wastewater retained a greater amount of solid-associated Se. Additional wastewater experiments were conducted with supplemental carbohydrate- or glycerin-based carbon products and additional nitrogen- and phosphorous-containing nutrients in some cases to enhance fungal growth. Relative to unamended wastewater experiments, supplemental carbohydrates promote Se removal from municipal wastewater but minimally impact industrial wastewater removal. This demonstrates that carbon availability and source impacts fungal Se reduction and removal from solution. Calculations to assess the leaching potential of solid-associated Se from fungal biomass show that wastewater Se release will not exceed regulatory limits. This study highlights the considerable potential for the mycoremediation of Se-contaminated wastewaters.

8.
Environ Sci Technol ; 54(6): 3570-3580, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32083848

ABSTRACT

Selenium (Se) redox chemistry is a determining factor for its environmental toxicity and mobility. Currently, millions of people are impacted by Se deficiency or toxicity, and in geologic history, several mass extinctions have been linked to extreme Se deficiency. Importantly, microbial activity and interactions with other biogeochemically active elements can drastically alter Se oxidation state and form, impacting its bioavailability. Here, we use wet geochemistry, spectroscopy, and electron microscopy to identify a cryptic, or hidden, Se cycle involving the reoxidation of biogenic volatile Se compounds in the presence of biogenic manganese [Mn(III, IV)] oxides and oxyhydroxides (hereafter referred to as "Mn oxides"). Using two common environmental Ascomycete fungi, Paraconiothyrium sporulosum and Stagonospora sp., we observed that aerobic Se(IV and VI) bioreduction to Se(0) and Se(-II) occurs simultaneously alongside the opposite redox biomineralization process of mycogenic Mn(II) oxidation to Mn oxides. Selenium bioreduction produced stable Se(0) nanoparticles and organoselenium compounds. However, mycogenic Mn oxides rapidly oxidized volatile Se products, recycling these compounds back to soluble forms. Given their abundance in natural systems, biogenic Mn oxides likely play an important role mediating Se biogeochemistry. Elucidating this cryptic Se cycle is essential for understanding and predicting Se behavior in diverse environmental systems.


Subject(s)
Manganese , Selenium , Manganese Compounds , Oxidation-Reduction , Oxides
9.
Animals (Basel) ; 9(9)2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31480736

ABSTRACT

The objective of this study was to evaluate the welfare of cull cows in a slaughtering plant, using indicators of health on arrival and indicators of handling during the stunning process. These pre-slaughter indicators were associated with post-slaughter indicators of the same cows, such as carcass bruising and condemnations. Transport staff surveys showed that all drivers had been trained on animal welfare. All loads of cows came directly from farms and had an average transport duration of 5 h 22 min. Indicators were registered in 237 cows during unloading at the slaughterhouse and in the stunning box. Bruises and condemnations were recorded post-slaughter in the carcasses of the same cows. Results at arrival showed that 48% of the cows had low body condition, 50% had mammary problems, and 24% suffered from lameness. During stunning, 16% of cows needed a second shot, and 54% exceeded the 60 s established as a recommended interval between stunning and bleeding. During the post-slaughter evaluation, 50% of the carcasses had more than two bruises and 70.46% had a bruise severity score different from zero. Low body condition was a risk factor to increase the severity of bruises; low body condition and mammary problems increased carcass condemnations; the stunning process indicators were not statistically associated with the severity of the bruises. For cull cows the main animal welfare issue originates at farm level.

10.
Appl Environ Microbiol ; 84(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29915105

ABSTRACT

Mining and other industrial activities worldwide have resulted in Se-enriched surface soils, which pose risks to human and environmental health. Although not well studied, microbial activity can alter Se bioavailability and distribution, even in oxic environments. We used high-throughput sequencing to profile bacterial and fungal communities inhabiting mine soils in southeastern Idaho, comparing mined and unmined locations within two reclaimed phosphate mine areas containing various Se concentrations. The goal was to determine whether microbial communities differed in (i) different mines, (ii) mined areas compared to unmined areas, and (iii) various soil Se concentrations. Though reclamation occurred 20 to 30 years ago, microbial community structures in mined soils were significantly altered compared to unmined soils, suggesting persistent mining-related impacts on soil processes. Additionally, operational taxonomic unit with a 97% sequence similarity cutoff (OTU0.03) richness and diversity were significantly diminished with increasing Se, though not with other geochemical parameters, suggesting that Se contamination shapes communities in favor of Se-tolerant microorganisms. Two bacterial phyla, Actinobacteria and Gemmatimonadetes, were enriched in high-Se soils, while for fungi, Ascomycota dominated all soils regardless of Se concentration. Combining diversity analyses and taxonomic patterns enables us to move toward connecting physiological function of microbial groups to Se biogeochemical cycling in oxic soil environments.IMPORTANCE Selenium contamination in natural environments is of great concern globally, and microbial processes are known to mediate Se transformations. Such transformations alter Se mobility, bioavailability, and toxicity, which can amplify or mitigate Se pollution. To date, nearly all studies investigating Se-microbe interactions have used culture-based approaches with anaerobic bacteria despite growing knowledge that (i) aerobic Se transformations can occur, (ii) such transformations can be mediated by microorganisms other than bacteria, and (iii) microbial community dynamics, rather than individual organismal activities, are important for metal(loid) cycling in natural environments. We examined bacterial and fungal communities in Se-contaminated reclaimed mine soils and found significant declines in diversity at high Se concentrations. Additionally, we identified specific taxonomic groups that tolerate excess Se and may be useful for bioremediation purposes. These patterns were similar across mines of different ages, suggesting that microbial community impacts may persist long after physicochemical parameters indicate complete site recovery.


Subject(s)
Bacteria/classification , Fungi/classification , Microbiota , Mycobiome , Selenium/analysis , Soil Microbiology , Biodegradation, Environmental , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Idaho , Mining , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Pollutants/analysis
11.
Sci Total Environ ; 616-617: 279-287, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29121576

ABSTRACT

Cadmium contamination in soil is a substantial global problem, and of significant concern due to high food-chain transfer. Cadmium hyperaccumulators are of particular interest because of their ability to tolerate and take up significant amounts of heavy metal pollution from soils. One particular plant, Noccaea caerulescens (formerly, Thlaspi caerulescens), has been extensively studied in terms of its capacity to accumulate heavy metals (specifically Zn and Cd), though these studies have primarily utilized hydroponic and metal-spiked model soil systems. We studied Cd and nutrient uptake by two N. caerulescens ecotypes, Prayon (Zn-only hyperaccumulator) and Ganges (Zn- and Cd-hyperaccumulator) in four long-term field-contaminated soils. Our data suggest that individual soil properties such as total soil Cd, Zn:Cd molar ratio, or soil pH do not accurately predict Cd uptake by hyperaccumulating plants. Additionally, total Cd uptake by the hyperaccumulating Ganges ecotype was substantially less than its physiological capacity, which is likely due to Cd-containing solid phases (primarily iron oxides) and pH that play an important role in regulating and limiting Cd solubility. Increased P accumulation in the Ganges leaves, and greater plant Fe accumulation from Cd-containing soils suggests that rhizosphere alterations via proton, and potentially organic acid, secretion may also play a role in nutrient and Cd acquisition by the plant roots. The current study highlights the role that soil geochemical factors play in influencing Cd uptake by hyperaccumulating plants. While these plants may have high physiological potential to accumulate metals from contaminated soils, individual soil geochemical factors and the plant-soil interactions in that soil will dictate the actual amount of phytoextractable metal. This underlines the need for site-specific understanding of metal-containing solid phases and geochemical properties of soils before undertaking phytoextraction efforts.


Subject(s)
Brassicaceae/metabolism , Cadmium/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Zinc/metabolism
12.
J Environ Qual ; 46(2): 373-383, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28380570

ABSTRACT

Metal contaminants in soils can persist for millennia, causing lasting negative impacts on local ecosystems. Long-term contaminant bioavailability is related to soil pH and to the strength and stability of solid-phase associations. We combined physical density separation with synchrotron-based microspectroscopy to reduce solid-phase complexity and to study Zn speciation in field-contaminated soils. We also investigated Zn uptake in two Zn-hyperaccumulating ecotypes of (Ganges and Prayon). Soils were either moderately contaminated (500-800 mg Zn kg via contaminated biosolids application) or grossly enriched (26,000 mg Zn kg via geogenic enrichment). Soils were separated using sodium polytungstate into three fractions: light fraction (LF) (<1.6 g cm), medium fraction (MF) (1.6-2.8 g cm), and heavy fraction (HF) (>2.8 g cm). Approximately 45% of the total Zn was associated with MF in biosolids-contaminated soils. From these data, we infer redistribution to the MF after biosolids application because Zn in biosolids is principally associated with HF and LF. Our results suggest that increasing proportions of HF-associated Zn in soils may be related to greater relative Zn removal by Zn hyperaccumulating plants. Using density fractions enabled assessment of Zn speciation on a microscale despite incomplete fractionation. Analyzing both density fractions and whole soils revealed certain phases (e.g., ZnS, Zn coprecipitated with Fe oxides) that were not obvious in all analyses, indicating multiple views of the same soils enable a more complete understanding of Zn speciation.


Subject(s)
Soil Pollutants/chemistry , Zinc/chemistry , Biological Availability , Environmental Pollution , Metals, Heavy , Soil
13.
Vet Parasitol ; 175(1-2): 60-5, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-20965660

ABSTRACT

American mink (Neovison vison) is a widely distributed invasive species in southern Chile. Thirty four feral minks were trapped at two distinct sites (rural and peri-urban), diet analyzed and Toxoplasma gondii exposure compared using PCR and specific antibodies. Serum samples were evaluated using a commercial latex agglutination test where a titer ≥ 1:32 was considered positive. Of 30 mink analyzed, 21 (70%) were positive to T. gondii antibodies, with titers ranging from 1:32 to 1:2048. As expected, adult mink showed higher seroprevalence of exposure to T. gondii (18/21) than young mink (3/9) (P=0.008). There was not statistically significant difference between sex groups (P=0.687). Differences in seroprevalence were observed between the two sample sites with a higher proportion of positive individuals in the peri-urban area, and therefore, closer to human settlements (35.7% vs. 100%, P=0.0001). Individuals positive to T. gondii using PCR and/or serology showed similar differences by site with higher infected individuals in peri-urban areas (58.8% vs. 100%, P=0.007). Diet of American mink based in fecal composition analyses was mainly based on crustaceans (frequency of occurrence: crustaceans=100%, birds and rodents<7%), suggesting that the high observed prevalence of T. gondii infection might be more associated with its aquatic behavior (e.g. ingestion of oocysts in contaminated fresh water) than with their trophic behavior (e.g. preying over species that can have T. gondii cysts in their tissues). As an invasive species potentially subject to routine culling to maintain population sizes under control, minks could be used as a sentinel species to monitor pathogens of public and wildlife health importance, such as T. gondii, in aquatic environments.


Subject(s)
Mink , Toxoplasmosis, Animal/parasitology , Animals , Chile , Demography , Feces/parasitology , Female , Introduced Species , Male , Seroepidemiologic Studies , Toxoplasmosis, Animal/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...