Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Extracell Vesicles ; 11(11): e12278, 2022 11.
Article in English | MEDLINE | ID: mdl-36404434

ABSTRACT

Liquid biopsy is a minimally invasive alternative to surgical biopsy, encompassing different analytes including extracellular vesicles (EVs), circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), proteins, and metabolites. EVs are released by virtually all cells, but at a higher rate by faster cycling, malignant cells. They encapsulate cargo native to the originating cell and can thus provide a window into the tumour landscape. EVs are often analysed in bulk which hinders the analysis of rare, tumour-specific EV subpopulations from the large host EV background. Here, we fractionated EV subpopulations in vitro and in vivo and characterized their phenotype and generic cargo. We used 5-aminolevulinic acid (5-ALA) to induce release of endogenously fluorescent tumour-specific EVs (EVPpIX ). Analysis of five different subpopulations (EVPpIX , EVCD63 , EVCD9 , EVEGFR , EVCFDA ) from glioblastoma (GBM) cell lines revealed unique transcriptome profiles, with the EVPpIX transcriptome demonstrating closer alignment to tumorigenic processes over the other subpopulations. Similarly, isolation of tumour-specific EVs from GBM patient plasma showed enrichment in GBM-associated genes, when compared to bulk EVs from plasma. We propose that fractionation of EV populations facilitates detection and isolation of tumour-specific EVs for disease monitoring.


Subject(s)
Extracellular Vesicles , Glioblastoma , Aminolevulinic Acid/metabolism , Extracellular Vesicles/metabolism , Glioblastoma/diagnosis , Humans
2.
Clin Cancer Res ; 28(18): 4070-4082, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35849415

ABSTRACT

PURPOSE: Liquid biopsy offers an attractive platform for noninvasive tumor diagnosis, prognostication, and prediction of glioblastoma clinical outcomes. Prior studies report that 30% to 50% of GBM lesions characterized by EGFR amplification also harbor the EGFRvIII mutation. EXPERIMENTAL DESIGN: A novel digital droplet PCR (ddPCR) assay for high GC content amplicons was developed and optimized for sensitive detection of EGFRvIII in tumor tissue and circulating extracellular vesicle RNA (EV RNA) isolated from the plasma of patients with glioma. RESULTS: Our optimized qPCR assay detected EGFRvIII mRNA in 81% [95% confidence interval (CI), 68%-94%] of EGFR-amplified glioma tumor tissue, indicating a higher than previously reported prevalence of EGFRvIII in glioma. Using the optimized ddPCR assay in discovery and blinded validation cohorts, we detected EGFRvIII mutation in 73% (95% CI, 64%-82%) of patients with a specificity of 98% (95% CI, 87%-100%), compared with qPCR tumor tissue analysis. In addition, upon longitudinal monitoring in 4 patients, we report detection of EGFRvIII in the plasma of patients with different clinical outcomes, rising with tumor progression, and decreasing in response to treatment. CONCLUSIONS: This study demonstrates the feasibility of detecting EGFRvIII mutation in plasma using a highly sensitive and specific ddPCR assay. We also show a higher than previously reported EGFRvIII prevalence in glioma tumor tissue. Several features of the assay are favorable for clinical implementation for detection and monitoring of EGFRvIII-positive tumors.


Subject(s)
Brain Neoplasms , Cell-Free Nucleic Acids , Extracellular Vesicles , Glioblastoma , Glioma , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Cell-Free Nucleic Acids/genetics , ErbB Receptors , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Glioblastoma/pathology , Glioma/diagnosis , Glioma/genetics , Humans , Mutation , RNA , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...