Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mycorrhiza ; 15(2): 143-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15221578

ABSTRACT

Forest soil from an experimental Norway spruce forest with four levels of wood ash addition (0, 1, 3 and 6 tonnes ha(-1)) was used to inoculate pine (Pinus sylvestris) seedlings with indigenous ectomycorrhizal (EM) fungi. Uptake of 32P and 86Rb in a root bioassay was used to estimate the demand for P and K by seedlings grown in the different soils. Utilisation of P from apatite was tested in a laboratory system where uptake by the ectomycorrhizal mycelium was separated from uptake by roots. The demand for P and K in the seedlings was similar regardless of the ash treatment. Variation in EM levels, estimated as fungal biomass (ergosterol) in roots, was large in the different soils, but not related to ash addition. Uptake of P from apatite was, on average, 23% of total seedling P and was not related to EM levels. It was concluded that the improved P uptake from apatite by EM fungi found in earlier studies is probably not a general phenomenon among EM fungi. The small effect of ash addition on EM levels and P uptake suggests that addition of granulated wood ash is a forest management treatment that will have only minor influence on ectomycorrhizal symbiosis.


Subject(s)
Mycorrhizae/physiology , Pinus sylvestris/microbiology , Plant Roots/microbiology , Trees/microbiology , Apatites/metabolism , Biomass , Phosphorus/metabolism , Pinus sylvestris/physiology , Plant Roots/physiology , Seedlings/microbiology , Seedlings/physiology , Soil Microbiology , Trees/physiology , Wood
2.
Oecologia ; 139(1): 89-97, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14727173

ABSTRACT

Nutrient uptake by forest trees is dependent on ectomycorrhizal (EM) mycelia that grow out into the soil from the mycorrhizal root tips. We estimated the production of EM mycelia in root free samples of pure spruce and mixed spruce-oak stands in southern Sweden as mycelia grown into sand-filled mesh bags placed at three different soil depths (0-10, 10-20 and 20-30 cm). The mesh bags were collected after 12 months and we found that 590+/-70 kg ha(-1) year(-1) of pure mycelia was produced in spruce stands and 420+/-160 kg ha(-1) year(-1) in mixed stands. The production of EM mycelia in the mesh bags decreased with soil depth in both stand types but tended to be more concentrated in the top soil in the mixed stands compared to the spruce stands. The fungal biomass was also determined in soil samples taken from different depths by using phospholipid fatty acids as markers for fungal biomass. Subsamples were incubated at 20 degrees C for 5 months and the amount of fungal biomass that degraded during the incubation period was used as an estimate of EM fungal biomass. The EM biomass in the soil profile decreased with soil depth and did not differ significantly between the two stand types. The total EM biomass in the pure spruce stands was estimated to be 4.8+/-0.9 x 10(3) kg ha(-1) and in the mixed stands 5.8+/-1.1 x 10(3) kg ha(-1) down to 70 cm depth. The biomass and production estimates of EM mycelia suggest a very long turnover time or that necromass has been included in the biomass estimates. The amount of N present in EM mycelia was estimated to be 121 kg N ha(-1) in spruce stands and 187 kg N ha(-1) in mixed stands. The delta13C value for mycelia in mesh bags was not influenced by soil depth, indicating that the fungi obtained all their carbon from the tree roots. The delta13C values in mycelia collected from mixed stands were intermediate to values from pure spruce and pure oak stands suggesting that the EM mycelia received carbon from both spruce and oak trees in the mixed stands. The delta15N value for the EM mycelia and the surrounding soil increased with soil depth suggesting that they obtained their entire N from the surrounding soil.


Subject(s)
Mycorrhizae/chemistry , Mycorrhizae/growth & development , Plant Roots/microbiology , Trees , Biomass , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Picea/growth & development , Picea/physiology , Quercus/growth & development , Quercus/physiology
3.
Environ Pollut ; 123(1): 75-83, 2003.
Article in English | MEDLINE | ID: mdl-12663207

ABSTRACT

Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl2) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution , Forestry , Calcium/analysis , Hydrogen-Ion Concentration , Magnesium/analysis , Pica , Pinus , Potassium/analysis , Soil/analysis , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...