Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Drug Resist ; 24(3): 260-268, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28759321

ABSTRACT

This study provides an estimate of antimicrobial resistance in intestinal indicator bacteria from humans (n = 97) and food animals (n = 388) in Tanzania. More than 70% of all fecal samples contained tetracycline (TE), sulfamethoxazole (STX), and ampicillin (AMP)-resistant coliforms, while cefotaxime (CTX)-resistant coliforms were observed in 40% of all samples. The average Log10 colony forming units/g of CTX-resistant coliforms in samples from humans were 2.20. Of 390 Escherichia coli tested, 66.4% were resistant to TE, 54.9% to STX, 54.9% to streptomycin, and 36.4% to CTX. Isolates were commonly (65.1%) multiresistant. All CTX-resistant isolates contained blaCTX-M gene type. AMP- and vancomycin-resistant enterococci were rare, and the average concentrations in positive samples were low (log10 0.9 and 0.4, respectively). A low-to-moderate resistance (2.1-15%) was detected in 240 enterococci isolates to the drugs tested, except for rifampicin resistance (75.2% of isolates). The average number of sulII gene copies varied between Log10 5.37 and 5.68 with no significant difference between sample source, while cattle had significantly higher number of tetW genes than humans. These findings, based on randomly obtained samples, will be instrumental in designing antimicrobial resistance (AMR) intervention strategies for Tanzania.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus/drug effects , Escherichia coli Infections/veterinary , Escherichia coli/drug effects , Streptococcal Infections/veterinary , Ampicillin/pharmacology , Animals , Cattle , Cefotaxime/pharmacology , Enterococcus/classification , Enterococcus/genetics , Enterococcus/isolation & purification , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Feces/microbiology , Gene Expression , Humans , Livestock/microbiology , Plasmids/chemistry , Plasmids/metabolism , Poultry/microbiology , Rifampin/pharmacology , Streptococcal Infections/drug therapy , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptomycin/pharmacology , Sulfamethoxazole/pharmacology , Tanzania/epidemiology , Tetracycline/pharmacology
2.
PLoS One ; 9(7): e101869, 2014.
Article in English | MEDLINE | ID: mdl-24992475

ABSTRACT

Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut sets) predicted to be required for growth in vivo. We termed such cut sets synthetic auxotrophic pairs. We tested whether these would reveal possible combined targets for new antibiotics by analyzing the performance of selected single and double mutants in systemic mouse infections. One hundred and two cut sets were identified. Sixty-three of these included only pathways encoded by fully annotated genes, and from this sub-set we selected five cut sets involved in amino acid or polyamine biosynthesis. One cut set (asnA/asnB) demonstrated redundancy in vitro and in vivo and showed that asparagine is essential for S. Typhimurium during infection. trpB/trpA as well as single mutants were attenuated for growth in vitro, while only the double mutant was a cut set in vivo, underlining previous observations that tryptophan is essential for successful outcome of infection. speB/speF,speC was not affected in vitro but was attenuated during infection showing that polyamines are essential for virulence apparently in a growth independent manner. The serA/glyA cut-set was found to be growth attenuated as predicted by the model. However, not only the double mutant, but also the glyA mutant, were found to be attenuated for virulence. This adds glycine production or conversion of glycine to THF to the list of essential reactions during infection. One pair (thrC/kbl) showed true redundancy in vitro but not in vivo demonstrating that threonine is available to the bacterium during infection. These data add to the existing knowledge of available nutrients in the intra-host environment, and have identified possible new targets for antibiotics.


Subject(s)
Bacterial Proteins/genetics , Metabolic Networks and Pathways , Salmonella typhimurium/growth & development , Salmonella typhimurium/pathogenicity , Virulence Factors/genetics , Animals , Asparagine/metabolism , Bacterial Proteins/metabolism , Computer Simulation , Female , Genetic Fitness , Humans , Mice , Mice, Inbred C57BL , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Tryptophan/metabolism , Virulence Factors/metabolism
3.
Pathog Dis ; 70(1): 70-4, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23929591

ABSTRACT

Peroxiredoxins contribute to protection of some bacteria against reactive oxygen intermediates (ROIs) and reactive nitrogen intermediates (RNIs). Listeria monocytogenes, a facultative intracellular bacterial pathogen, interacts with ROIs and RNIs during infection. In this study, we investigated the involvement of the 2-Cys peroxiredoxin (Prx) homologue in L. monocytogenes in the protection against ROIs and RNIs and in virulence through the construction of an in-frame prx deletion mutant. The Δprx mutant had increased sensitivity to hydrogen peroxide and cumene hydroperoxide compared to the wild-type strain. The mutant also exhibited an increased susceptibility to the nitric oxide-generating compound S-nitroso-N-acetylpenicillamine (SNAP) and 3-morpholinosydnonimine hydrochloride (SIN-1), a peroxynitrite donor. Furthermore, a diminished virulence of the Δprx mutant relative to the wild-type was observed in C57BL/6 mice, but not in inducible nitric oxide synthase-deficient mice. The results suggest that Prx protects L. monocytogenes against oxidative and nitrosative stress in vitro and in vivo and that the prx-encoded polypeptide thereby is involved in L. monocytogenes virulence.


Subject(s)
Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Oxidative Stress/genetics , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Virulence/genetics , Animals , Hydrogen Peroxide/metabolism , Mice , Mice, Inbred C57BL , Nitric Oxide/genetics , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , S-Nitroso-N-Acetylpenicillamine/metabolism
4.
BMC Microbiol ; 13: 294, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24345035

ABSTRACT

BACKGROUND: Salmonella Typhimurium is an important pathogen of human and animals. It shows a broad growth range and survives in harsh conditions. The aim of this study was to analyze transcriptional responses to a number of growth and stress conditions as well as the relationship of metabolic pathways and/or cell functions at the genome-scale-level by network analysis, and further to explore whether highly connected genes (hubs) in these networks were essential for growth, stress adaptation and virulence. RESULTS: De novo generated as well as published transcriptional data for 425 selected genes under a number of growth and stress conditions were used to construct a bipartite network connecting culture conditions and significantly regulated genes (transcriptional network). Also, a genome scale network was constructed for strain LT2. The latter connected genes with metabolic pathways and cellular functions. Both networks were shown to belong to the family of scale-free networks characterized by the presence of highly connected nodes or hubs which are genes whose transcription is regulated when responding to many of the assayed culture conditions or genes encoding products involved in a high number of metabolic pathways and cell functions.The five genes with most connections in the transcriptional network (wraB, ygaU, uspA, cbpA and osmC) and in the genome scale network (ychN, siiF (STM4262), yajD, ybeB and dcoC) were selected for mutations, however mutagenesis of ygaU and ybeB proved unsuccessful. No difference between mutants and the wild type strain was observed during growth at unfavorable temperatures, pH values, NaCl concentrations and in the presence of H2O2. Eight mutants were evaluated for virulence in C57/BL6 mice and none differed from the wild type strain. Notably, however, deviations of phenotypes with respect to the wild type were observed when combinations of these genes were deleted. CONCLUSION: Network analysis revealed the presence of hubs in both transcriptional and functional networks of S. Typhimurium. Hubs theoretically confer higher resistance to random mutation but a greater susceptibility to directed attacks, however, we found that genes that formed hubs were dispensable for growth, stress adaptation and virulence, suggesting that evolution favors non-essential genes as main connectors in cellular networks.


Subject(s)
Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Genes, Bacterial , Salmonella typhimurium/genetics , Adaptation, Physiological , Gene Expression Profiling , Genes, Essential , Salmonella typhimurium/physiology , Stress, Physiological , Transcription, Genetic
5.
PLoS One ; 7(12): e51196, 2012.
Article in English | MEDLINE | ID: mdl-23236453

ABSTRACT

We investigated if the transcriptional response of Salmonella Typhimurium to temperature and acid variations was hysteretic, i.e. whether the transcriptional regulation caused by environmental stimuli showed memory and remained after the stimuli ceased. The transcriptional activity of non-replicating stationary phase cells of S. Typhimurium caused by the exposure to 45 °C and to pH 5 for 30 min was monitored by microarray hybridizations at the end of the treatment period as well as immediately and 30 minutes after conditions were set back to their initial values, 25 °C and pH 7. One hundred and two out of 120 up-regulated genes during the heat shock remained up-regulated 30 minutes after the temperature was set back to 25 °C, while only 86 out of 293 down regulated genes remained down regulated 30 minutes after the heat shock ceased. Thus, the majority of the induced genes exhibited hysteresis, i.e., they remained up-regulated after the environmental stress ceased. At 25 °C the transcriptional regulation of genes encoding for heat shock proteins was determined by the previous environment. Gene networks constructed with up-regulated genes were significantly more modular than those of down-regulated genes, implying that down-regulation was significantly less synchronized than up-regulation. The hysteretic transcriptional response to heat shock was accompanied by higher resistance to inactivation at 50 °C as well as cross-resistance to inactivation at pH 3; however, growth rates and lag times at 43 °C and at pH 4.5 were not affected. The exposure to pH 5 only caused up-regulation of 12 genes and this response was neither hysteretic nor accompanied of increased resistance to inactivation conditions. Cellular memory at the transcriptional level may represent a mechanism of adaptation to the environment and a deterministic source of variability in gene regulation.


Subject(s)
Antifreeze Proteins/metabolism , Gene Expression Regulation/physiology , Heat-Shock Response/physiology , Salmonella typhimurium/growth & development , Transcription, Genetic/physiology , Analysis of Variance , Hot Temperature , Hydrogen-Ion Concentration , Microarray Analysis , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...