Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Biochim Biophys Acta ; 1864(1): 29-41, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26497278

ABSTRACT

BACKGROUND: α1-Microglobulin (A1M) is a reductase and radical scavenger involved in physiological protection against oxidative damage. These functions were previously shown to be dependent upon cysteinyl-, C34, and lysyl side-chains, K(92, 118,130). A1M binds heme and the crystal structure suggests that C34 and H123 participate in a heme binding site. We have investigated the involvement of these five residues in the interactions with heme. METHODS: Four A1M-variants were expressed: with cysteine to serine substitution in position 34, lysine to threonine substitutions in positions (92, 118, 130), histidine to serine substitution in position 123 and a wt without mutations. Heme binding was investigated by tryptophan fluorescence quenching, UV-Vis spectrophotometry, circular dichroism, SPR, electrophoretic migration shift, gel filtration, catalase-like activity and molecular simulation. RESULTS: All A1M-variants bound to heme. Mutations in C34, H123 or K(92, 118, 130) resulted in significant absorbance changes, CD spectral changes, and catalase-like activity, suggesting involvement of these side-groups in coordination of the heme-iron. Molecular simulation support a model with two heme-binding sites in A1M involving the mutated residues. Binding of the first heme induces allosteric stabilization of the structure predisposing for a better fit of the second heme. CONCLUSIONS: The results suggest that one heme-binding site is located in the lipocalin pocket and a second binding site between loops 1 and 4. Reactions with the hemes involve the side-groups of C34, K(92, 118, 130) and H123. GENERAL SIGNIFICANCE: The model provides a structural basis for the functional activities of A1M: heme binding activity of A1M.


Subject(s)
Alpha-Globulins/chemistry , Heme/chemistry , Molecular Dynamics Simulation , Protein Structure, Tertiary , Alpha-Globulins/genetics , Alpha-Globulins/metabolism , Binding Sites/genetics , Blotting, Western , Circular Dichroism , Heme/metabolism , Humans , Mutagenesis, Site-Directed/methods , Mutation , Oxidation-Reduction , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...