Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Bone Res ; 10(1): 9, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35087025

ABSTRACT

Intermittent injections of parathyroid hormone (iPTH) are applied clinically to stimulate bone formation by osteoblasts, although continuous elevation of parathyroid hormone (PTH) primarily results in increased bone resorption. Here, we identified Calca, encoding the sepsis biomarker procalcitonin (ProCT), as a novel target gene of PTH in murine osteoblasts that inhibits osteoclast formation. During iPTH treatment, mice lacking ProCT develop increased bone resorption with excessive osteoclast formation in both the long bones and axial skeleton. Mechanistically, ProCT inhibits the expression of key mediators involved in the recruitment of macrophages, representing osteoclast precursors. Accordingly, ProCT arrests macrophage migration and causes inhibition of early but not late osteoclastogenesis. In conclusion, our results reveal a potential role of osteoblast-derived ProCT in the bone microenvironment that is required to limit bone resorption during iPTH.

2.
J Bone Miner Res ; 35(9): 1726-1737, 2020 09.
Article in English | MEDLINE | ID: mdl-32369212

ABSTRACT

Since a key function of Wnt1 in brain development was established early on through the generation of non-viable Wnt1-deficient mice, it was initially surprising that WNT1 mutations were found to cause either early-onset osteoporosis (EOOP) or osteogenesis imperfecta type XV (OI-XV). The deduced function of Wnt1 as an osteoanabolic factor has been confirmed in various mouse models with bone-specific inactivation or overexpression, but mice carrying disease-causing Wnt1 mutations have not yet been described. Triggered by the clinical analysis of EOOP patients carrying a heterozygous WNT1 mutation (p.R235W), we introduced this mutation into the murine Wnt1 gene to address the question of whether this would cause a skeletal phenotype. We observed that Wnt1+/R235W and Wnt1R235W/R235W mice were born at the expected Mendelian ratio and that they did not display postnatal lethality or obvious nonskeletal phenotypes. At 12 weeks of age, the homozygous presence of the Wnt1 mutation was associated with reduced trabecular and cortical bone mass, explained by a lower bone formation rate compared with wild-type littermates. At 52 weeks of age, we also observed a moderate bone mass reduction in heterozygous Wnt1+/R235W mice, thereby underscoring their value as a model of WNT1-dependent EOOP. Importantly, when we treated wild-type and Wnt1+/R235W mice by daily injection of parathyroid hormone (PTH), we detected the same osteoanabolic influence in both groups, together with an increased cortical thickness in the mutant mice. Our data demonstrate the pathogenicity of the WNT1-R235W mutation, confirm that controlling skeletal integrity is the primary physiological function of Wnt1, and suggest that osteoanabolic treatment with teriparatide should be applicable for individuals with WNT1-dependent EOOP. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Mutation , Animals , Bone and Bones , Mice , Mutation/genetics , Osteogenesis Imperfecta/genetics , Phenotype , Wnt1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...