Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 50(2): 362-377.e6, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30709738

ABSTRACT

Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.


Subject(s)
Forkhead Transcription Factors/immunology , Mutation , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Child , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/immunology , Genetic Diseases, X-Linked/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/immunology , Polyendocrinopathies, Autoimmune/metabolism , T-Lymphocytes, Regulatory/metabolism , Th2 Cells/metabolism
2.
Immunity ; 42(2): 227-238, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25680271

ABSTRACT

Regulatory T cells (Treg cells) are required for immune homeostasis. Chromatin remodeling is essential for establishing diverse cellular identities, but how the epigenetic program in Treg cells is maintained throughout the dynamic activation process remains unclear. Here we have shown that CD28 co-stimulation, an extracellular cue intrinsically required for Treg cell maintenance, induced the chromatin-modifying enzyme, Ezh2. Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired resolution of experimental autoimmune encephalomyelitis. Utilizing a model designed to selectively deplete wild-type Treg cells in adult mice co-populated with Ezh2-deficient Treg cells, Ezh2-deficient cells were destabilized and failed to prevent autoimmunity. After activation, the transcriptome of Ezh2-deficient Treg cells was disrupted, with altered expression of Treg cell lineage genes in a pattern similar to Foxp3-deficient Treg cells. These studies reveal a critical role for Ezh2 in the maintenance of Treg cell identity during cellular activation.


Subject(s)
CD28 Antigens/immunology , Lymphocyte Activation/immunology , Polycomb Repressive Complex 2/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmunity/genetics , Autoimmunity/immunology , CD8-Positive T-Lymphocytes/immunology , Chromatin Assembly and Disassembly , Encephalomyelitis, Autoimmune, Experimental/immunology , Enhancer of Zeste Homolog 2 Protein , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Heparin-binding EGF-like Growth Factor/genetics , Immune Tolerance/genetics , Immune Tolerance/immunology , Lymphocyte Depletion , Mice , Mice, Inbred C57BL , Mice, Transgenic , Polycomb Repressive Complex 2/genetics , Promoter Regions, Genetic/genetics , T-Lymphocytes, Regulatory/cytology
3.
J Immunol ; 191(4): 1594-605, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23858035

ABSTRACT

microRNAs (miRNA) are essential for regulatory T cell (Treg) function but little is known about the functional relevance of individual miRNA loci. We identified the miR-17-92 cluster as CD28 costimulation dependent, suggesting that it may be key for Treg development and function. Although overall immune homeostasis was maintained in mice with miR-17-92-deficient Tregs, expression of the miR-17-92 miRNA cluster was critical for Treg accumulation and function during an acute organ-specific autoimmune disease in vivo. Treg-specific loss of miR-17-92 expression resulted in exacerbated experimental autoimmune encephalitis and failure to establish clinical remission. Using peptide-MHC tetramers, we demonstrate that the miR-17-92 cluster was specifically required for the accumulation of activated Ag-specific Treg and for differentiation into IL-10-producing effector Treg.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , MicroRNAs/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Animals , Antigen Presentation , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , CD28 Antigens/immunology , Cells, Cultured , Costimulatory and Inhibitory T-Cell Receptors/immunology , Epitopes, T-Lymphocyte/immunology , Gene Deletion , Heterozygote , Histocompatibility Antigens Class II/immunology , Homeostasis , Humans , Interleukin-10/biosynthesis , Lymphocyte Activation , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , Myelin-Oligodendrocyte Glycoprotein/immunology , PTEN Phosphohydrolase/deficiency , Peptide Fragments/immunology , Proto-Oncogene Proteins/genetics , RNA, Long Noncoding , Young Adult
4.
J Exp Med ; 206(3): 507-14, 2009 Mar 16.
Article in English | MEDLINE | ID: mdl-19221395

ABSTRACT

Autoimmune-prone nonobese diabetic mice deficient for B7-2 spontaneously develop an autoimmune peripheral neuropathy mediated by inflammatory CD4(+) T cells that is reminiscent of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. To determine the etiology of this disease, CD4(+) T cell hybridomas were generated from inflamed tissue-derived CD4(+) T cells. A majority of T cell hybridomas were specific for myelin protein 0 (P0), which was the principal target of autoantibody responses targeting nerve proteins. To determine whether P0-specific T cell responses were sufficient to mediate disease, we generated a novel myelin P0-specific T cell receptor transgenic (POT) mouse. POT T cells were not tolerized or deleted during thymic development and proliferated in response to P0 in vitro. Importantly, when bred onto a recombination activating gene knockout background, POT mice developed a fulminant form of peripheral neuropathy that affected all mice by weaning age and led to their premature death by 3-5 wk of age. This abrupt disease was associated with the production of interferon gamma by P0-specific T cells and a lack of CD4(+) Foxp3(+) regulatory T cells. Collectively, our data suggest that myelin P0 is a major autoantigen in autoimmune peripheral neuropathy.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Myelin P0 Protein/metabolism , Peripheral Nervous System Diseases/immunology , Peripheral Nervous System Diseases/pathology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Animals , Autoimmune Diseases/complications , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cytokines/biosynthesis , Epitopes , Hybridomas , Mice , Mice, Inbred NOD , Mice, Transgenic , Peripheral Nerves/immunology , Peripheral Nerves/pathology , Peripheral Nervous System Diseases/complications , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...