Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
2.
Micromachines (Basel) ; 15(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38258202

ABSTRACT

Limitations of bone defect reconstruction include poor bone healing and osteointegration with acrylic cements, lack of strength with bone putty/paste, and poor osteointegration. Tissue engineering aims to bridge these gaps through the use of bioactive implants. However, there is often a risk of infection and biofilm formation associated with orthopedic implants, which may develop anti-microbial resistance. To promote bone repair while also locally delivering therapeutics, 3D-printed implants serve as a suitable alternative. Soft, nanoporous 3D-printed filaments made from a thermoplastic polyurethane and polyvinyl alcohol blend, LAY-FOMM and LAY-FELT, have shown promise for drug delivery and orthopedic applications. Here, we compare 3D printability and sustained antibiotic release kinetics from two types of commercial 3D-printed porous filaments suitable for bone tissue engineering applications. We found that both LAY-FOMM and LAY-FELT could be consistently printed into scaffolds for drug delivery. Further, the materials could sustainably release Tetracycline over 3 days, independent of material type and infill geometry. The drug-loaded materials did not show any cytotoxicity when cultured with primary human fibroblasts. We conclude that both LAY-FOMM and LAY-FELT 3D-printed scaffolds are suitable devices for local antibiotic delivery applications, and they may have potential applications to prophylactically reduce infections in orthopedic reconstruction surgery.

4.
Biomaterials ; 286: 121606, 2022 07.
Article in English | MEDLINE | ID: mdl-35660820

ABSTRACT

Tendons are force transmitting mechanosensitive tissues predominantly comprised of highly aligned collagen type I fibres. In this study, the recently introduced gel aspiration-ejection method was used to rapidly fabricate aligned dense collagen (ADC) hydrogel scaffolds. ADCs provide a biomimetic environment compared to traditional collagen hydrogels that are mechanically unstable and comprised of randomly oriented fibrils. The ADC scaffolds were shown to be anisotropic with comparable stiffness to immature tendons. Furthermore, the application of static and cyclic uniaxial loading, short-term (48 h) and high-strain (20%), resulted in a 3-fold increase in both the ultimate tensile strength and modulus of ADCs. Similar mechanical activation of human mesenchymal stem cell (MSC) seeded ADCs in serum- and growth factor-free medium induced their tenogenic differentiation. Both static and cyclic loading profiles resulted in a greater than 12-fold increase in scleraxis gene expression and either suppressed or maintained osteogenic and chondrogenic expressions. Following the 48 h mechanoactivation period, the MSC-seeded scaffolds were matured by tethering in basal medium without further external mechanical stimulation for 19 days, altogether making up 21 days of culture. Extensive cell-induced matrix remodeling and deposition of collagen types I and III, tenascin-C and tenomodulin were observed, where initial cyclic loading induced significantly higher tenomodulin protein content. Moreover, the initial short-term mechanical stimulation elongated and polarized seeded MSCs, and overall cell alignment was significantly increased in those under static loading. These findings indicate the regenerative potential of the ADC scaffolds for short-term mechanoactivated tenogenic differentiation, which were achieved even in the absence of serum and growth factors that may potentially increase clinical translatability.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Cell Differentiation , Cells, Cultured , Collagen/metabolism , Collagen Type I/metabolism , Humans , Hydrogels/metabolism , Tissue Engineering/methods
5.
Biomater Adv ; 134: 112566, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35523644

ABSTRACT

Metastatic cancers can be highly heterogeneous, show large patient variability and are typically hard to treat due to chemoresistance. Personalized therapies are therefore needed to suppress tumor growth and enhance patient's quality of life. Identifying appropriate patient-specific therapies remains a challenge though, due mainly to non-physiological in vitro culture systems. Therefore, more complex and physiological in vitro human cancer microenvironment tools could drastically aid in development of new therapies. We developed a plasma-modified, electro-spun 3D scaffold (PP-3D-S) that can mimic the human cancer microenvironment for customized-cancer therapeutic screening. The PP-3D-S was characterized for optimal plasma-modifying treatment and scaffolds morphology including fiber diameter and pore size. PP-3D-S was then seeded with human fibroblasts to mimic a stromal tissue layer; cell adhesion on plasma-modified poly (lactic acid), PLA, electrospun mats vastly exceeded that on untreated controls. The cell-seeded scaffolds were then overlaid with alginate/gelatin-based hydrogel embedded with MDA-MB231 human breast cancer cells, representing a tumor-tissue interface. Among three different plasma treatments, we found that NH3 plasma promoted the most tumor cell migration to the scaffold surfaces after 7 days of culture. For all treated and non-treated mats, we observed a significant difference in tumor cell migration between small-sized and either medium- or large-sized scaffolds. In addition, we found that the PP-3D-S was highly comparable to the standard Matrigel® migration assays in two different sets of doxorubicin screening experiments, where 75% reduction in migration was achieved with 0.5 µM doxorubicin for both systems. Taken together, our data indicate that PP-3D-S is an effective, low-cost, and easy-to-use alternate 3D tumor migration model which may be suitable as a physiological drug screening tool for personalized medicine against metastatic cancers.


Subject(s)
Quality of Life , Tissue Scaffolds , Coculture Techniques , Doxorubicin/pharmacology , Humans , Hydrogels/pharmacology
6.
Micromachines (Basel) ; 13(4)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35457892

ABSTRACT

Spheroids are recognized for resembling the important characteristics of natural tumors in cancer research. However, the lack of controllability of the spheroid size, form, and density in conventional spheroid culture methods reduces the reproducibility and precision of bioassay results and the assessment of drug-dose responses in spheroids. Nonetheless, the accurate prediction of cellular responses to drug compounds is crucial for developing new efficient therapeutic agents and optimizing existing therapeutic strategies for personalized medicine. We developed a surface-optimized PDMS microfluidic biochip to produce uniform and homogenous multicellular spheroids in a reproducible manner. This platform is surface optimized with 10% bovine serum albumin (BSA) to provide cell-repellent properties. Therefore, weak cell-surface interactions lead to the promotion of cell self-aggregations and the production of compact and uniform spheroids. We used a lung cancer cell line (A549), a co-culture model of lung cancer cells (A549) with (primary human osteoblasts, and patient-derived spine metastases cells (BML, bone metastasis secondary to lung). We observed that the behavior of cells cultured in three-dimensional (3D) spheroids within this biochip platform more closely reflects in vivo-like cellular responses to a chemotherapeutic drug, Doxorubicin, rather than on 24-well plates (two-dimensional (2D) model). It was also observed that the co-culture and patient-derived spheroids exhibited resistance to anti-cancer drugs more than the mono-culture spheroids. The repeatability of drug test results in this optimized platform is the hallmark of the reproducibility of uniform spheroids on a chip. This surface-optimized biochip can be a reliable platform to generate homogenous and uniform spheroids to study and monitor the tumor microenvironment and for drug screening.

7.
Calcif Tissue Int ; 110(3): 349-366, 2022 03.
Article in English | MEDLINE | ID: mdl-34668029

ABSTRACT

The immune system is an active component of bone repair. Mast cells influence the recruitment of macrophages, osteoclasts and blood vessels into the repair tissue. We hypothesized that if mast cells and other immune cells are sensitized to recognize broken bone, they will mount an increased response to subsequent fractures that may be translated into enhanced healing. To test this, we created a bone defect on the left leg of anesthetized mice and 2 weeks later, a second one on the right leg. Bone repair in the right legs was then compared to control mice that underwent the creation of bilateral window bone defects at the same time. Mice were euthanized at 14 and 56 days. Mineralized tissue quantity and morphometric parameters were assessed using micro-CT and histology. The activity of osteoblasts, osteoclasts, vascular endothelial cells, mast cells, and macrophages was evaluated using histochemistry. Our main findings were (1) no significant differences in the amount of bone produced at 14- or 56 days post-operative between groups; (2) mice exposed to subsequent fractures showed significantly better bone morphometric parameters after 56 days post-operative; and (3) significant increases in the content of blood vessels, osteoclasts, and the number of macrophages in the subsequent fracture group. Our results provide strong evidence that a transient increase in the inflammatory state of a healing injury promotes faster bone remodelling and increased neo-angiogenesis. This phenomenon is also characterized by changes in mast cell and macrophage content that translate into more active recruitment of mesenchymal stromal cells.


Subject(s)
Endothelial Cells , Fractures, Bone , Animals , Bone Remodeling , Fracture Healing , Fractures, Bone/pathology , Mice , Osteoblasts , Osteoclasts/pathology
8.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613604

ABSTRACT

Bone is a frequent site of tumor metastasis. The bone-tumor microenvironment is heterogeneous and complex in nature. Such complexity is compounded by relations between metastatic and bone cells influencing their sensitivity/resistance to chemotherapeutics. Standard chemotherapeutics may not show efficacy for every patient, and new therapeutics are slow to emerge, owing to the limitations of existing 2D/3D models. We previously developed a 3D interface model for personalized therapeutic screening, consisting of an electrospun poly lactic acid mesh activated with plasma species and seeded with stromal cells. Tumor cells embedded in an alginate-gelatin hydrogel are overlaid to create a physiologic 3D interface. Here, we applied our 3D model as a migration assay tool to verify the migratory behavior of different patient-derived bone metastasized cells. We assessed the impact of two different chemotherapeutics, Doxorubicin and Cisplatin, on migration of patient cells and their immortalized cell line counterparts. We observed different migratory behaviors and cellular metabolic activities blocked with both Doxorubicin and Cisplatin treatment; however, higher efficiency or lower IC50 was observed with Doxorubicin. Gene expression analysis of MDA-MB231 that migrated through our 3D hybrid model verified epithelial-mesenchymal transition through increased expression of mesenchymal markers involved in the metastasis process. Our findings indicate that we can model tumor migration in vivo, in line with different cell characteristics and it may be a suitable drug screening tool for personalized medicine approaches in metastatic cancer treatment.


Subject(s)
Bone Neoplasms , Cisplatin , Humans , Tumor Microenvironment , Bone Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Doxorubicin/pharmacology
9.
Materials (Basel) ; 14(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34885408

ABSTRACT

Tooth sensitivity is a painful and very common problem. Often stimulated by consuming hot, cold, sweet, or acidic foods, it is associated with exposed dentin microtubules that are open to dental pulp. One common treatment for tooth hypersensitivity is the application of occlusive particles to block dentin microtubules. The primary methodology currently used to test the penetration and occlusion of particles into dentin pores relies upon dentin discs cut from extracted bovine/human teeth. However, this method is limited due to low accessibility to the raw material. Thus, there is a need for an in vitro dentin model to characterize the effectiveness of occlusive agents. Three-dimensional printing technologies have emerged that make the printing of dentin-like structures possible. This study sought to develop and print a biomaterial ink that mimicked the natural composition and structure of dentin tubules. A formulation of type I collagen (Col), nanocrystalline hydroxyapatite (HAp), and alginate (Alg) was found to be suitable for the 3D printing of scaffolds. The performance of the 3D printed dentin model was compared to the natural dentin disk by image analysis via scanning electron microscopy (SEM), both pre- and post-treatment with occlusive microparticles, to evaluate the degree of dentinal tubule occlusion. The cytocompatibility of printed scaffolds was also confirmed in vitro. This is a promising biomaterial system for the 3D printing of dentin mimics.

10.
Front Cell Dev Biol ; 9: 654518, 2021.
Article in English | MEDLINE | ID: mdl-34307346

ABSTRACT

Orthopedic tumor resection, trauma, or degenerative disease surgeries can result in large bone defects and often require bone grafting. However, standard autologous bone grafting has been associated with donor site morbidity and/or limited quantity. As an alternate, allografts with or without metallic or polyether-etherketone have been used as grafting substitutes. However, these may have drawbacks as well, including stress shielding, pseudarthrosis, disease-transmission, and infection. There is therefore a need for alternative bone substitutes, such as the use of mechanically compliant three-dimensional (3D)-printed scaffolds. Several off-the-shelf materials are available for low-cost fused deposition 3D printing such as polylactic acid (PLA) and polycaprolactone (PCL). We have previously described the feasibility of 3D-printed PLA scaffolds to support cell activity and extracellular matrix deposition. In this study, we investigate two medical-grade filaments consistent with specifications found in American Society for Testing and Materials (ASTM) standard for semi-crystalline polylactide polymers for surgical implants, a pure polymer (100M) and a copolymeric material (7415) for their cytocompatibility and suitability in bone tissue engineering. Moreover, we assessed the impact on osteo-inductive properties with the addition of beta-tricalcium phosphate (ß-TCP) minerals and assessed their mechanical properties. 100M and 7415 scaffolds with the additive ß-TCP demonstrated superior mesenchymal stem cells (MSCs) differentiation detected via increased alkaline phosphatase activity (6-fold and 1.5-fold, respectively) and mineralized matrix deposition (14-fold and 5-fold, respectively) in vitro. Furthermore, we evaluated in vivo compatibility, biosafety and bone repair potential in a rat femur window defect model. 100M+ß -TCP implants displayed a positive biosafety profile and showed significantly enhanced new bone formation compared to 100M implants evidenced by µCT (39 versus 25% bone volume/tissue volume ratio) and histological analysis 6 weeks post-implantation. These scaffolds are encouraging composite biomaterials for repairing bone applications with a great potential for clinical translation. Further analyses are required with appropriate evaluation in a larger critical-sized defect animal model with long-term follow-up.

11.
Mater Sci Eng C Mater Biol Appl ; 120: 111743, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545885

ABSTRACT

Dense collagen (DC) gels facilitate the osteoblastic differentiation of seeded dental pulp stem cells (DPSCs) and undergo rapid acellular mineralization when incorporated with bioactive glass particles, both in vitro and subcutaneously in vivo. However, the potential of DC-bioactive glass hybrid gels in delivering DPSCs for bone regeneration in an osseous site has not been investigated. In this study, the efficacies of both acellular and DPSC-seeded DC-S53P4 bioactive glass [(53)SiO2-(23)Na2O-(20)CaO-(4)P2O5, wt%] hybrid gels were investigated in a critical-sized murine calvarial defect. The incorporation of S53P4, an osteostimulative bioactive glass, into DC gels led to its accelerated acellular mineralization in simulated body fluid (SBF), in vitro, where hydroxycarbonated apatite was detected within 1 day. By day 7 in SBF, micro-mechanical analysis demonstrated an 8-fold increase in the compressive modulus of the mineralized gels. The in-situ effect of the bioactive glass on human-DPSCs within DC-S53P4 was evident, by their osteogenic differentiation in the absence of osteogenic supplements. The production of alkaline phosphatase and collagen type I was further increased when cultured in osteogenic media. This osteostimulative effect of DC-S53P4 constructs was confirmed in vivo, where after 8 weeks implantation, both acellular scaffolds and DPSC-seeded DC-S53P4 constructs formed mineralized and vascularized bone matrices with osteoblastic and osteoclastic cell activity. Surprisingly, however, in vivo micro-CT analysis confirmed that the acellular scaffolds generated larger volumes of bone, already visible at week 3 and exhibiting superior trabecular architecture. The results of this study suggest that DC-S53P4 scaffolds negate the need for stem cell delivery for effective bone tissue regeneration and may expedite their path towards clinical applications.


Subject(s)
Osteogenesis , Tissue Scaffolds , Animals , Collagen , Gels , Glass , Humans , Mice , Silicon Dioxide , Stem Cells
12.
APL Bioeng ; 5(1): 011502, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33564740

ABSTRACT

Bioprinting is a tool increasingly used in tissue engineering laboratories around the world. As an extension to classic tissue engineering, it enables high levels of control over the spatial deposition of cells, materials, and other factors. It is a field with huge promise for the production of implantable tissues and even organs, but the availability of functional bioinks is a barrier to success. Extrusion bioprinting is the most commonly used technique, where high-viscosity solutions of materials and cells are required to ensure good shape fidelity of the printed tissue construct. This is contradictory to hydrogels used in tissue engineering, which are generally of low viscosity prior to cross-linking to ensure cell viability, making them not directly translatable to bioprinting. This review provides an overview of the important rheological parameters for bioinks and methods to assess printability, as well as the effect of bioink rheology on cell viability. Developments over the last five years in bioink formulations and the use of suspended printing to overcome rheological limitations are then discussed.

13.
Front Bioeng Biotechnol ; 8: 557215, 2020.
Article in English | MEDLINE | ID: mdl-33195122

ABSTRACT

Critical-size bone defects are those that will not heal without intervention and can arise secondary to trauma, infection, and surgical resection of tumors. Treatment options are currently limited to filling the defect with autologous bone, of which there is not always an abundant supply, or ceramic pastes that only allow for limited osteo-inductive and -conductive capacity. In this study we investigate the repair of bone defects using a 3D printed LayFomm scaffold. LayFomm is a polymer blend of polyvinyl alcohol (PVA) and polyurethane (PU). It can be printed using the most common method of 3D printing, fused deposition modeling, before being washed in water-based solutions to remove the PVA. This leaves a more compliant, micro-porous PU elastomer. In vitro analysis of dental pulp stem cells seeded onto macro-porous scaffolds showed their ability to adhere, proliferate and form mineralized matrix on the scaffold in the presence of osteogenic media. Subcutaneous implantation of LayFomm in a rat model showed the formation of a vascularized fibrous capsule, but without a chronic inflammatory response. Implantation into a mandibular defect showed significantly increased mineralized tissue production when compared to a currently approved bone putty. While their mechanical properties are insufficient for use in load-bearing defects, these findings are promising for the use of polyurethane scaffolds in craniofacial bone regeneration.

14.
Micromachines (Basel) ; 11(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933035

ABSTRACT

The current gold standard technique for treatment of anterior cruciate ligament (ACL) injury is reconstruction with autograft. These treatments have a relatively high failure and re-tear rate. To overcome this, tissue engineering and additive manufacturing are being used to explore the potential of 3D scaffolds as autograft substitutes. However, mechanically optimal polymers for this have yet to be identified. Here, we use 3D printing technology and various materials with the aim of fabricating constructs better matching the mechanical properties of the native ACL. A fused deposition modeling (FDM) 3D printer was used to microfabricate dog bone-shaped specimens from six different polymers-PLA, PETG, Lay FOMM 60, NinjaFlex, NinjaFlex-SemiFlex, and FlexiFil-at three different raster angles. The tensile mechanical properties of these polymers were determined from stress-strain curves. Our results indicate that no single material came close enough to successfully match reported mechanical properties of the native ACL. However, PLA and PETG had similar ultimate tensile strengths. Lay FOMM 60 displayed a percentage strain at failure similar to reported values for native ACL. Furthermore, raster angle had a significant impact on some mechanical properties for all of the materials except for FlexiFil. We therefore conclude that while none of these materials alone is optimal for mimicking ACL mechanical properties, there may be potential for creating a 3D-printed composite constructs to match ACL mechanical properties. Further investigations involving co-printing of stiff and elastomeric materials must be explored.

15.
Micromachines (Basel) ; 11(6)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570945

ABSTRACT

Following the advancements in microfluidics and lab-on-a-chip (LOC) technologies, a novel biomedical application for microfluidic based devices has emerged in recent years and microengineered cell culture platforms have been created. These micro-devices, known as organ-on-a-chip (OOC) platforms mimic the in vivo like microenvironment of living organs and offer more physiologically relevant in vitro models of human organs. Consequently, the concept of OOC has gained great attention from researchers in the field worldwide to offer powerful tools for biomedical researches including disease modeling, drug development, etc. This review highlights the background of biochip development. Herein, we focus on applications of LOC devices as a versatile tool for POC applications. We also review current progress in OOC platforms towards body-on-a-chip, and we provide concluding remarks and future perspectives for OOC platforms for POC applications.

16.
J Clin Med ; 8(8)2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31416169

ABSTRACT

Zoledronate (Zol) is an anti-resorptive/tumoral agent used for the treatment of many cancers including spinal bone metastasis. High systemic administration of a single dose is now the standard clinical care, yet it has been associated with several side effects. Here, we aimed to evaluate the effects of lower doses Zol on lung cancer and lung cancer-induced bone metastasis cells over a longer time period. Human lung cancer (HCC827) and three bone metastases secondary to lung cancer (BML1, BML3 and BML4) cells were treated with Zol at 1, 3 and 10 µM for 7 days and then assessed for cell proliferation, migration, invasion and apoptosis. Low Zol treatment significantly decreased cell proliferation (1, 3 and 10 µM), migration (3 and 10 µM) and invasion (10 µM) while increasing apoptosis (10 µM) in lung cancer and metastatic cells. Our data exploits the potential of using low doses Zol for longer treatment periods and reinforces this approach as a new therapeutic regimen to impede the development of metastatic bone cancer while limiting severe side effects following high doses of systemic drug treatment.

17.
Ann Transl Med ; 7(10): 223, 2019 May.
Article in English | MEDLINE | ID: mdl-31297388

ABSTRACT

The spine is one of the most common sites of bony metastases, and its involvement leads to significant patient morbidity. Surgical management in these patients is aimed at improving quality of life and functional status throughout the course of the disease. Resection of metastases often leads to critical size bone defects, presenting a challenge to achieving adequate bone regeneration to fill the void. Current treatment options for repairing these defects are bone grafting and commercial bone cements; however, each has associated limitations. Additionally, tumor recurrence and tumor-induced bone loss make bone regeneration particularly difficult. Systemic therapeutic delivery, such as bisphosphonates, have become standard of care to combat bone loss despite unfavorable systemic side-effects and lack of local efficacy. Developments from tissue engineering have introduced novel materials with osteoinductive and osteoconductive properties which also act as structural support scaffolds for bone regeneration. These new materials can also act as a therapeutic reservoir to sustainably release drugs locally as an alternative to systemic therapy. In this review, we outline recent advancements in tissue engineering and the role of translational research in developing implants that can fully repair bone defects while also delivering local therapeutics to curb tumor recurrence and improve patient quality of life.

18.
ACS Appl Mater Interfaces ; 11(17): 15306-15315, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30973708

ABSTRACT

Large bone defects represent a significant challenge for clinicians and surgeons. Tissue engineering for bone regeneration represents an innovative solution for this dilemma and may yield attractive alternate bone substitutes. Three-dimensional (3D) printing with inexpensive desktop printers shows promise in generating high-resolution structures mimicking native tissues using biocompatible, biodegradable, and cost-effective thermoplastics, which are already FDA-approved for food use, drug delivery, and many medical devices. Microporous 3D-printed polylactic acid scaffolds, with different pore sizes (500, 750, and 1000 µm), were designed and manufactured using an inexpensive desktop 3D printer, and the mechanical properties were assessed. The scaffolds were compared for cell growth, activity, and bone-like tissue formation using primary human osteoblasts. Osteoblasts showed high proliferation, metabolic activity, and osteogenic matrix protein production, in which 750 µm pore-size scaffolds showed superiority. Further experimentation using human mesenchymal stem cells on 750 µm pore scaffolds showed their ability in supporting osteogenic differentiation. These findings suggest that even in the absence of any surface modifications, low-cost 750 µm pore-size 3D-printed scaffolds may be suitable as a bone substitute for repair of large bone defects.


Subject(s)
Polyesters/chemistry , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Adolescent , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Compressive Strength , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Middle Aged , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/drug effects , Porosity , Tissue Engineering , Young Adult
19.
Cancer Cell Int ; 19: 28, 2019.
Article in English | MEDLINE | ID: mdl-30787671

ABSTRACT

BACKGROUND: Bisphosphonates (BPs) including zoledronate (zol) have become standard care for bone metastases as they effectively inhibit tumor-induced osteolysis and associated pain. Several studies have also suggested that zol has direct anti-tumor activity. Systemic administration at high doses is the current approach to deliver zol, yet it has been associated with debilitating side effects. Local therapeutic delivery offers the ability to administer much lower total dosage, while at the same time maintaining sustained high-local drug concentration directly at the target treatment site. Here, we aimed to assess effects of lower doses of zol on bone metastases over a longer time. METHODS: Prostate cancer cell line LAPC4 and prostate-induced bone metastasis cells were treated with zol at 1, 3 and 10 µM for 7 days. Following treatment, cell proliferation was assessed using Almarblue®, Vybrant MTT®, and Live/Dead® viability/cytotoxicity assays. Additionally, cell migration and invasion were carried out using Falcon™ cell culture inserts and Cultrex® 3D spheroid cell invasion assays respectively. RESULTS: We show that treatment with 3-10 µM zol over 7-days significantly decreased cell proliferation in both the prostate cancer cell line LAPC4 and cells from spine metastases secondary to prostate cancer. Using the same low-dose and longer time course for treatment, we demonstrate that 10 µM zol also significantly inhibits tumor cell migration and 3D-cell growth/invasion. CONCLUSIONS: This project harnesses the potential of using zol at low doses for longer treatment periods, which may be a viable treatment modality when coupled with biomaterials or biodevices for local delivery.

20.
Materials (Basel) ; 11(9)2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30134523

ABSTRACT

The spine is the most common site of bone metastasis, often originating from prostate, lung, and breast cancers. High systemic doses of chemotherapeutics such as doxorubicin (DOX), cisplatin, or paclitaxel often have severe side effects. Surgical removal of spine metastases also leaves large defects which cannot spontaneously heal and require bone grafting. To circumvent these issues, we designed an approach for local chemotherapeutic delivery within 3D-printed scaffolds which could also potentially serve as a bone substitute. Direct treatment of prostate cancer cell line LAPC4 and patient derived spine metastases cells with 0.01 µM DOX significantly reduced metabolic activity, proliferation, migration, and spheroid growth. We then assessed uptake and release of DOX in a series of porous 3D-printed scaffolds on LAPC4 cells as well as patient-derived spine metastases cells. Over seven days, 60⁻75% of DOX loaded onto scaffolds could be released, which significantly reduced metabolic activity and proliferation of both LAPC4 and patient derived cells, while unloaded scaffolds had no effect. Porous 3D-printed scaffolds may provide a novel and inexpensive approach to locally deliver chemotherapeutics in a patient-specific manner at tumor resection sites. With a composite design to enhance strength and promote sustained drug release, the scaffolds could reduce systemic negative effects, enhance bone repair, and improve patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...