Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 39(47): 9343-9359, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31591156

ABSTRACT

Subcortical white matter stroke is a common stroke subtype. White matter stroke stimulates adjacent oligodendrocyte progenitor cells (OPCs) to divide and migrate to the lesion, but stroke OPCs have only a limited differentiation into mature oligodendrocytes. To understand the molecular systems that are active in OPC responses in white matter stroke, OPCs were virally labeled and laser-captured in the region of partial damage adjacent to the infarct in male mice. RNAseq indicates two distinct OPC transcriptomes associated with the proliferative and limited-regeneration phases of OPCs after stroke. Molecular pathways related to nuclear receptor activation, ECM turnover, and lipid biosynthesis are activated during proliferative OPC phases after stroke; inflammatory and growth factor signaling is activated in the later stage of limited OPC differentiation. Within ECM proteins, Matrilin-2 is induced early after stroke and then rapidly downregulated. Prediction of upstream regulators of the OPC stroke transcriptome identifies several candidate molecules, including Inhibin A-a negative regulator of Matrilin-2. Inhibin A is induced in reactive astrocytes after stroke, including in humans. In functional assays, Matrilin-2 induces OPC differentiation, and Inhibin A inhibits OPC Matrilin-2 expression and inhibits OPC differentiation. In vivo, Matrilin-2 promotes motor recovery after white matter stroke, and promotes OPC differentiation and ultrastructural evidence of remyelination. These studies show that white matter stroke induces an initial proliferative and reparative response in OPCs, but this is blocked by a local cellular niche where reactive astrocytes secrete Inhibin A, downregulating Matrilin-2 and blocking myelin repair and recovery.SIGNIFICANCE STATEMENT Stroke in the cerebral white matter of the brain is common. The biology of damage and recovery in this stroke subtype are not well defined. These studies use cell-specific RNA sequencing and gain-of-function studies to show that white matter stroke induces a glial signaling niche, present in both humans and mice, between reactive astrocytes and oligodendrocyte progenitor cells. Astrocyte secretion of Inhibin A and downregulation of oligodendrocyte precursor production of Matrilin-2 limit OPC differentiation, tissue repair, and recovery in this disease.


Subject(s)
Astrocytes/pathology , Oligodendroglia/pathology , Recovery of Function , Stroke/pathology , White Matter/pathology , Animals , Astrocytes/physiology , Cell Differentiation/physiology , Cells, Cultured , Gene Expression Profiling/methods , Humans , Male , Mice , Mice, Inbred C57BL , Oligodendroglia/physiology , Rats , Recovery of Function/physiology , Stroke/genetics , White Matter/physiology
2.
Proc Natl Acad Sci U S A ; 113(52): E8453-E8462, 2016 12 27.
Article in English | MEDLINE | ID: mdl-27956620

ABSTRACT

White matter stroke is a distinct stroke subtype, accounting for up to 25% of stroke and constituting the second leading cause of dementia. The biology of possible tissue repair after white matter stroke has not been determined. In a mouse stroke model, white matter ischemia causes focal damage and adjacent areas of axonal myelin disruption and gliosis. In these areas of only partial damage, local white matter progenitors respond to injury, as oligodendrocyte progenitors (OPCs) proliferate. However, OPCs fail to mature into oligodendrocytes (OLs) even in regions of demyelination with intact axons and instead divert into an astrocytic fate. Local axonal sprouting occurs, producing an increase in unmyelinated fibers in the corpus callosum. The OPC maturation block after white matter stroke is in part mediated via Nogo receptor 1 (NgR1) signaling. In both aged and young adult mice, stroke induces NgR1 ligands and down-regulates NgR1 inhibitors during the peak OPC maturation block. Nogo ligands are also induced adjacent to human white matter stroke in humans. A Nogo signaling blockade with an NgR1 antagonist administered after stroke reduces the OPC astrocytic transformation and improves poststroke oligodendrogenesis in mice. Notably, increased white matter repair in aged mice is translated into significant poststroke motor recovery, even when NgR1 blockade is provided during the chronic time points of injury. These data provide a perspective on the role of NgR1 ligand function in OPC fate in the context of a specific and common type of stroke and show that it is amenable to systemic intervention to promote recovery.


Subject(s)
Aging , Myelin Sheath/chemistry , Nogo Receptor 1/metabolism , Stroke/physiopathology , White Matter/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Axons/metabolism , Brain/pathology , Cell Differentiation , Demyelinating Diseases , Disease Models, Animal , Humans , Ligands , Mice , Mice, Transgenic , Oligodendroglia/cytology , Remyelination , Stem Cells/cytology , Stroke Rehabilitation , White Matter/pathology
3.
Brain Res ; 1623: 123-34, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-25704204

ABSTRACT

Approximately one quarter of all strokes in humans occur in white matter, and the progressive nature of white matter lesions often results in severe physical and mental disability. Unlike cortical grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms behind ischemic damage to white matter elements, the regenerative responses of glial cells and their signaling pathways, all differ significantly from those in grey matter. Development of effective therapies for white matter stroke would require an enhanced understanding of the complex cellular and molecular interactions within the white matter, leading to the identification of new therapeutic targets. This review will address the unique properties of the axon-glia unit during white matter stroke, describe the challenging process of promoting effective white matter repair, and discuss recently-identified signaling pathways which may hold potential targets for repair in this disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.


Subject(s)
Axons/physiology , Neuroglia/physiology , Stroke/physiopathology , White Matter/physiopathology , Animals , Axons/pathology , Humans , Neuroglia/pathology , Recovery of Function/physiology , Stroke/pathology , White Matter/pathology
4.
Stroke ; 44(9): 2579-86, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23868277

ABSTRACT

BACKGROUND AND PURPOSE: Subcortical white matter stroke (WMS) constitutes up to 30% of all stroke subtypes. Mechanisms of oligodendrocyte and axon injury and repair play a central role in the damage and recovery after this type of stroke, and a comprehensive study of these processes requires a specialized experimental model that is different from common large artery, gray matter stroke models. Diminished recovery from stroke in aged patients implies that damage and repair processes are affected by advanced age, but such effects have not been studied in WMS. METHODS: WMS was produced with focal microinjection of the vasoconstrictor N5-(1-iminoethyl)-L-ornithine into the subcortical white matter ventral to the mouse forelimb motor cortex in young adult (2 months), middle-aged (15 months), and aged mice (24 months). RESULTS: WMS produced localized oligodendrocyte cell death with higher numbers of apoptotic cells and greater oxidative damage in aged brains than in young-adult brains. Increased expression of monocyte chemotactic protein-1 and tumor necrosis factor-α in motor cortex neurons correlated with a more distributed microglial activation in aged brains 7 days after WMS. At 2 months, aged mice displayed increased white matter atrophy and greater loss of corticostriatal connections compared with young-adult mice. Behavioral testing revealed an age-dependent exacerbation of forelimb motor deficits caused by the stroke, with decreased long-term functional recovery in aged animals. CONCLUSIONS: Age has a profound effect on the outcome of WMS, with more prolonged cell death and oxidative damage, increased inflammation, greater secondary white matter atrophy, and a worse behavioral effect in aged versus young-adult mice.


Subject(s)
Aging/pathology , Cerebrum/pathology , Inflammation Mediators/physiology , Leukoencephalopathies/pathology , Oligodendroglia/pathology , Stroke/pathology , Animals , Atrophy , Disease Models, Animal , Leukoencephalopathies/chemically induced , Mice , Mice, Inbred C57BL , Movement Disorders/etiology , Movement Disorders/pathology , Movement Disorders/physiopathology , Oxidative Stress/physiology , Recovery of Function/physiology , Stroke/chemically induced , Stroke/complications
5.
Ann Neurol ; 74(4): 611-21, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23686887

ABSTRACT

OBJECTIVE: Extrasynaptic γ-aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are highly expressed in the dentate gyrus (DG) subfield of the hippocampus, where they generate a tonic conductance that regulates neuronal activity. GABAA receptor-dependent signaling regulates memory and also facilitates postnatal neurogenesis in the adult DG; however, the role of the δGABAA receptors in these processes is unclear. Accordingly, we sought to determine whether δGABAA receptors regulate memory behaviors, as well as neurogenesis in the DG. METHODS: Memory and neurogenesis were studied in wild-type (WT) mice and transgenic mice that lacked δGABAA receptors (Gabrd(-/-)). To pharmacologically increase δGABAA receptor activity, mice were treated with the δGABAA receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP). Behavioral assays including recognition memory, contextual discrimination, and fear extinction were used. Neurogenesis was studied by measuring the proliferation, survival, migration, maturation, and dendritic complexity of adult-born neurons in the DG. RESULTS: Gabrd(-/-) mice exhibited impaired recognition memory and contextual discrimination relative to WT mice. Fear extinction was also impaired in Gabrd(-/-) mice, although the acquisition of fear memory was enhanced. Neurogenesis was disrupted in Gabrd(-/-) mice as the migration, maturation, and dendritic development of adult-born neurons were impaired. Long-term treatment with THIP facilitated learning and neurogenesis in WT but not Gabrd(-/-) mice. INTERPRETATION: δGABAA receptors promote the performance of certain DG-dependent memory behaviors and facilitate neurogenesis. Furthermore, δGABAA receptors can be pharmacologically targeted to enhance these processes.


Subject(s)
Dentate Gyrus/physiology , Memory/physiology , Neurogenesis/genetics , Receptors, GABA-A/metabolism , Analysis of Variance , Animals , Discrimination, Psychological/physiology , Electroshock/adverse effects , Exploratory Behavior/physiology , GABA Agonists/pharmacology , Isoxazoles/pharmacology , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, GABA-A/genetics , Recognition, Psychology/physiology
6.
Behav Brain Res ; 227(2): 464-9, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-21669236

ABSTRACT

Rats, subjected to low-dose irradiation that suppressed hippocampal neurogenesis, or a sham treatment, were administered a visual discrimination task under conditions of high, or low interference. Half of the rats engaged in running activity and the other half did not. In the non-runners, there was no effect of irradiation on learning, or remembering the discrimination response under low interference, but irradiation treatment increased their susceptibility to interference, resulting in loss of memory for the previously learned discrimination. Irradiated rats that engaged in running activity exhibited increased neuronal growth and protection from memory impairment. The results, which show that hippocampal cells generated in adulthood play a role in differentiating between conflicting, context-dependent memories, provide further evidence of the importance of neurogenesis in hippocampus-sensitive memory tasks. The results are consistent with computational models of hippocampal function that specify a central role for neurogenesis in the modulation of interfering influences during learning and memory.


Subject(s)
Discrimination Learning/physiology , Hippocampus/physiology , Memory/physiology , Neurogenesis/physiology , Animals , Male , Neurons/physiology , Physical Conditioning, Animal/physiology , Rats , Rats, Long-Evans
7.
Front Neurosci ; 5: 34, 2011.
Article in English | MEDLINE | ID: mdl-21442026

ABSTRACT

In the dentate gyrus (DG) of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the DG. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the DG, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immunohistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, "orphan" dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

8.
Article in English | MEDLINE | ID: mdl-20859446
9.
Graefes Arch Clin Exp Ophthalmol ; 248(10): 1423-35, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20449604

ABSTRACT

BACKGROUND: Neurons of adult mammalian CNS are prevented from regenerating injured axons due to formation of a non-permissive environment. The retinal ganglion cells (RGC), which are part of the CNS, share this characteristic. In sharp contrast, the RGC of lower vertebrates, such as fish, are capable of re-growing injured optic nerve axons, and achieve, through a complex multi-factorial process, functional vision after injury. Semaphorin-3A (sema-3A), a member of the class 3 semaphorins known for its repellent and apoptotic activities, has previously been shown to play a key role in the formation of a non-permissive environment after CNS injury in mammalians. METHODS: The expression of sema-3A and its effect on regenerative processes in injured gold fish retina and optic nerve were investigated in this study. Unilateral optic nerve axotomy or crush was induced in goldfish. 2 microl sema-3A was injected intraviterally 48 hours post injury. Neuronal viability was measured using the lipophilic neurotracer dye 4-Di-10-Asp. Axonal regeneration was initiated using the anterograde dye dextran. Retinas and optic nerves were collected at intervals of 2, 3, 7, 14 and 28 days after the procedure. Using Western blot and immunohistochemical analysis, the expression levels of semaphorin-3A, axonal regeneration, the removal of myelin debris and macrophage invasion were studied. RESULTS: We found a decrease in sema-3A levels in the retina at an early stage after optic nerve injury, but no change in sema-3A levels in the injured optic nerve. Intravitreal injection of sema-3A to goldfish eye, shortly after optic nerve injury, led to destructive effects on several pathways of the regenerative processes, including the survival of retinal ganglion cells, axonal growth, and clearance of myelin debris from the lesion site by macrophages. CONCLUSIONS: Exogenous administration of sema-3A in fish indirectly interferes with the regeneration process of the optic nerve. The findings corroborate our previous findings in mammals, and further validate sema-3A as a key factor in the generation of a non-permissive environment after transection of the optic nerve.


Subject(s)
Axons/physiology , Nerve Regeneration/physiology , Optic Nerve/physiology , Retinal Ganglion Cells/physiology , Semaphorin-3A/physiology , Animals , Axotomy , Blotting, Western , Cell Count , Cell Survival , Fluorescent Antibody Technique, Indirect , Goldfish , Injections , Macrophages/physiology , Nerve Crush , Nerve Regeneration/drug effects , Semaphorin-3A/pharmacology , Vitreous Body
SELECTION OF CITATIONS
SEARCH DETAIL
...