Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Plants (Basel) ; 9(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987964

ABSTRACT

Water scarcity is the primary constraint on crop productivity in arid and semiarid tropical areas suffering from climate alterations; in accordance, agricultural systems have to be optimized. Several concepts and strategies should be considered to improve crop yield and quality, particularly in vulnerable regions where such environmental changes cause a risk of food insecurity. In this work, we review two strategies aiming to increase drought stress tolerance: (i) the use of natural genes that have evolved over time and are preserved in crop wild relatives and landraces for drought tolerance breeding using conventional and molecular methods and (ii) exploiting the reservoir of neglected and underutilized species to identify those that are known to be more drought-tolerant than conventional staple crops while possessing other desired agronomic and nutritive characteristics, as well as introducing them into existing cropping systems to make them more resilient to water deficiency conditions. In the past, the existence of drought tolerance genes in crop wild relatives and landraces was either unknown or difficult to exploit using traditional breeding techniques to secure potential long-term solutions. Today, with the advances in genomics and phenomics, there are a number of new tools available that facilitate the discovery of drought resistance genes in crop wild relatives and landraces and their relatively easy transfer into advanced breeding lines, thus accelerating breeding progress and creating resilient varieties that can withstand prolonged drought periods. Among those tools are marker-assisted selection (MAS), genomic selection (GS), and targeted gene editing (clustered regularly interspaced short palindromic repeat (CRISPR) technology). The integration of these two major strategies, the advances in conventional and molecular breeding for the drought tolerance of conventional staple crops, and the introduction of drought-tolerant neglected and underutilized species into existing production systems has the potential to enhance the resilience of agricultural production under conditions of water scarcity.

3.
Front Plant Sci ; 11: 148, 2020.
Article in English | MEDLINE | ID: mdl-32194585

ABSTRACT

The ARP2/3 complex and formins are the only known plant actin nucleators. Besides their actin-related functions, both systems also modulate microtubule organization and dynamics. Loss of the main housekeeping Arabidopsis thaliana Class I membrane-targeted formin FH1 (At3g25500) is known to increase cotyledon pavement cell lobing, while mutations affecting ARP2/3 subunits exhibit an opposite effect. Here we examine the role of FH1 and the ARP2/3 complex subunit ARPC5 (At4g01710) in epidermal cell morphogenesis with focus on pavement cells and trichomes using a model system of single fh1 and arpc5, as well as double fh1 arpc5 mutants. While cotyledon pavement cell shape in double mutants mostly resembled single arpc5 mutants, analysis of true leaf epidermal morphology, as well as actin and microtubule organization and dynamics, revealed a more complex relationship between the two systems and similar, rather than antagonistic, effects on some parameters. Both fh1 and arpc5 mutations increased actin network density and increased cell shape complexity in pavement cells and trichomes of first true leaves, in contrast to cotyledons. Thus, while the two actin nucleation systems have complementary roles in some aspects of cell morphogenesis in cotyledon pavement cells, they may act in parallel in other cell types and developmental stages.

4.
Methods Mol Biol ; 1992: 135-149, 2019.
Article in English | MEDLINE | ID: mdl-31148036

ABSTRACT

The cortical microtubule and actin meshworks play a central role in the shaping of plant cells. Transgenic plants expressing fluorescent protein markers specifically tagging the two main cytoskeletal systems are available, allowing noninvasive in vivo studies. Advanced microscopy techniques, in particular confocal laser scanning microscopy (CLSM), spinning disk confocal microscopy (SDCM), and variable angle epifluorescence microscopy (VAEM), can be nowadays used for imaging the cortical cytoskeleton of living cells with unprecedented spatial and temporal resolution. With the aid of free computing tools based on the publicly available ImageJ software package, quantitative information can be extracted from microscopic images and video sequences, providing insight into both architecture and dynamics of the cortical cytoskeleton.


Subject(s)
Arabidopsis/ultrastructure , Cytoskeleton/ultrastructure , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Plant Cells/ultrastructure , Image Processing, Computer-Assisted/methods , Microtubules/ultrastructure
5.
J Food Sci ; 83(10): 2439-2447, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30184268

ABSTRACT

The diversity in human diets that can be reached by proper use of different crops and varieties, including some underutilized ones, is a potentially powerful strategy to ensure food security and prevent serious health problems caused by current diets that are often not fulfilling nutritional requirements. In the framework of this research, the content of tocopherols and tocotrienols, thiamine, riboflavin, pyridoxine, and superoxide dismutase in nine varieties of quinoa, both colored and nonpigmented, obtained from 4 different countries, was investigated and compared to the content of the same vitamins and antioxidants in barley and wheat, both colored and nonpigmented, cultivated in the same experimental field. The aim of this work was to create a crop diversity strategy and encourage the consumption of underutilized crops to ensure that the human diet fulfills nutritional requirements. The contents of vitamin B1, B2, B6, tocopherol, and tocotrienol isomers and superoxide dismutase were determined via HPLC; imaging techniques were used to evaluate the seed color. Quinoa grains had the greatest concentration of tocopherol isomers and activity, represented mainly by α-tocopherol and γ-tocopherol. Wheat and barley seeds had substantial concentrations of tocopherols and tocotrienols. The concentration of riboflavin was greater in barley and wheat than in quinoa, the concentrations of pyridoxine and thiamine were variety-dependent in all grains. Quinoa grains had greater concentration of superoxide dismutase compared to wheat and barley. The richness of each variety and crop should be recognized and used integrally to improve the diet quality. PRACTICAL APPLICATION: Nutritional potential of crops was evaluated from the viewpoint of selected vitamins and antioxidants to create a well-balanced diet. Combined use of both traditional (wheat, barley) and underutilized crops (quinoa) is recommended. HPLC methods and image analysis were successfully used as viable tools for food quality determination.


Subject(s)
Antioxidants/analysis , Chenopodium quinoa/chemistry , Hordeum/chemistry , Triticum/chemistry , Vitamins/analysis , Crops, Agricultural , Humans , Nutritive Value , Seeds/chemistry , Thiamine/analysis , Tocopherols/analysis , Tocotrienols/analysis , Vitamin A/analysis , Vitamin E/analysis , alpha-Tocopherol/analysis
7.
Plant Cell Physiol ; 57(3): 488-504, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26738547

ABSTRACT

Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Cell Shape , Cotyledon/metabolism , Cytoskeleton/metabolism , Membrane Proteins/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/metabolism , Arabidopsis/drug effects , Biomarkers/metabolism , Cell Shape/drug effects , Clathrin/metabolism , Cotyledon/drug effects , Cytoskeleton/drug effects , Fluorescence , Formins , Green Fluorescent Proteins/metabolism , Microtubules/drug effects , Microtubules/metabolism , Models, Biological , Mutation/genetics , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Thiones/pharmacology , Uracil/analogs & derivatives , Uracil/pharmacology
8.
Front Plant Sci ; 6: 1262, 2015.
Article in English | MEDLINE | ID: mdl-26858728

ABSTRACT

The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.

9.
BMC Plant Biol ; 14: 252, 2014 Sep 27.
Article in English | MEDLINE | ID: mdl-25260869

ABSTRACT

BACKGROUND: Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. RESULTS: The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. CONCLUSIONS: RabA1d is located in early endosomes/TGN and is involved in vesicle trafficking. RabA1d participates in both cell plate formation and root hair oscillatory tip growth. The specific GFP-RabA1d subcellular localization confirms a correlation between its specific spatio-temporal accumulation and local vesicle trafficking requirements during cell plate and root hair formation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Plant Roots/enzymology , rab GTP-Binding Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cytokinesis , Genes, Reporter , Onions/genetics , Onions/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Protein Transport , Proteomics , Recombinant Fusion Proteins , Nicotiana/genetics , Nicotiana/metabolism , rab GTP-Binding Proteins/genetics , trans-Golgi Network/enzymology
10.
Methods Mol Biol ; 1080: 87-97, 2014.
Article in English | MEDLINE | ID: mdl-24132421

ABSTRACT

The cortical microtubules, and to some extent also the actin meshwork, play a central role in the shaping of plant cells. Transgenic plants expressing fluorescent protein markers specifically tagging the two main cytoskeletal systems are available, allowing noninvasive in vivo studies. Advanced microscopy techniques, in particular confocal laser scanning microscopy (CLSM) and variable angle epifluorescence microscopy (VAEM), can be nowadays used for imaging the cortical cytoskeleton of living cells with unprecedented spatial and temporal resolution. With the aid of suitable computing techniques, quantitative information can be extracted from microscopic images and video sequences, providing insight into both architecture and dynamics of the cortical cytoskeleton.


Subject(s)
Arabidopsis/anatomy & histology , Arabidopsis/chemistry , Cytoskeleton/chemistry , Image Processing, Computer-Assisted/methods , Laser Scanning Cytometry/methods , Actins/chemistry
11.
J Exp Bot ; 64(2): 585-97, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23202131

ABSTRACT

Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin-microtubule cross-talk.


Subject(s)
Actin Cytoskeleton/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microtubules/metabolism , Mutation , Actin Cytoskeleton/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Formins , Microtubules/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...