Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 61(6): 1373-81, 2010.
Article in English | MEDLINE | ID: mdl-20351415

ABSTRACT

A research has been undertaken studying pesticide residues in water from greenhouses and the use of soils and filter materials to reduce such losses. The pesticides detected in water samples collected downstream greenhouses include 9 fungicides, 5 herbicides and 4 insecticides. 10 compounds from flower and vegetable productions were frequently found to exceed environmental risk levels, and with a few exceptions the compounds were found in higher concentrations than those typically found in agricultural runoff. Some compounds were found in high concentrations (>1 microg/l) in undiluted runoff from greenhouses producing vegetables. Nutrient concentrations in the runoff were also sporadically very high, with phosphorous values varying between 0.85 and 7.4 mg P/l, and nitrogen values between 7.5 and 41.4 mg N/l. Undiluted runoff from the productions showed values of 60 mg P/l and 300 mg N/l. High values of pesticides correlated with high values of nutrients, especially P. Column experiments using a sandy agricultural soil and stock solutions of non-polar and slightly polar pesticides mixed with a complex binder and nutrients showed a significant reduction for nearly all of the compounds used, indicating that transport through soil will reduce the concentrations of the studied pesticides. The pesticide adsorption capacity of the filter materials pine bark, peat, Sphagnum moss, compost, oat straw, ferrous sand and clay soil were tested in batch and column experiments. Adsorption were studied contacting the filter materials with aqueous solutions containing greenhouse production pesticides. The batch experiments showed that pine bark and peat, both combining a high content of organic matter with a low ph, provided the highest adsorption for most of the tested pesticides. Sphagnum moss, compost and oat straw also showed high adsorption for most of the pesticides, while the mineral filters provided the lowest adsorption (30-55%). Further column experiments confirmed these results, displaying the best removal efficiency in the organic materials, varying from 200 microg/g in compost, to 500 microg/g in moss, straw and pine bark.


Subject(s)
Pesticides/chemistry , Water Pollutants, Chemical/chemistry , Water/chemistry , Adsorption , Agriculture , Avena , Environment, Controlled , Filtration , Pinus , Plant Bark , Plant Stems , Silicon Dioxide , Soil , Sphagnopsida , Water Pollution, Chemical/prevention & control
2.
J Environ Sci (China) ; 20(8): 964-9, 2008.
Article in English | MEDLINE | ID: mdl-18817076

ABSTRACT

Tunnel wash waters characterize all waters that run off after washing procedures of tunnels are performed. These waters represent a wide spectrum of organic and inorganic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and toxic metals. Removal of such contaminants from water runoff was investigated using laboratory tests after washing procedure was performed on two road tunnels in eastern Norway (Hanekleiv and Bragernes). Due to diverse character of both, treatment media and treated wash waters, the whole investigation was divided into two separate laboratory experiments. The treatment efficiencies were established based on the levels of concentrations and reductions of the measured contaminants in the effluents released from the tested media. In the first part of the article, the contents of nonpolar oil (NPO), 16 individual PAHs, and total PAHs are described. This part revealed that the combination of two organic sorbent materials provided the highest treatment efficiency for wash waters released from the road tunnel and from electrostatic filters. The greatest reduction levels reached 97.6% for NPO, 97.2% for benzo[a]pyrene, and 96.5% for the total PAHs. In the second part of the article, the concentrations and the removal rates of toxic metals are reported.


Subject(s)
Oils/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Norway , Vehicle Emissions
3.
J Environ Sci (China) ; 20(9): 1042-5, 2008.
Article in English | MEDLINE | ID: mdl-19143309

ABSTRACT

In the first part of the article, the column and the bag experiments concerning removal of polycyclic aromatic hydrocarbons (PAHs) and nonpolar oil (NPO) from tunnel wash waters using organic sorbent materials have been described. This part presents the results of removal of toxic metals. The metals of concern (Al, As, Cd, Cr, Cu, Fe, Pb, Mo, Ni, and Zn) were selected based on the priority toxicant pollutants defined in surface water quality criteria. Concentrations of these metals in the collected effluents varied more than the concentrations of PAHs and NPO, and thus only metal contents were considered for statistical analyses. These analyses determined significant differences (P < 0.05, P < 0.01, and P < 0.001) between the mean metal concentrations in the column effluents and those in applied wash water of road tunnel. The results obtained during both experiments revealed that the organic sorbents, and in particular their combination, removed toxic metals more effectively from wash water of road tunnel than from wash water of tunnel electrostatic filters. Among the investigated toxicants, Al and Fe showed the highest levels of reduction in the column experiment, 99.7% and 99.6%, respectively. The lowest reduction levels of 66.0% and 76.2% were found for Pb and Mo, respectively. The results of the bag experiment showed that even one day treatment of wash waters from tunnel electrostatic filters could reduce concentration of some toxicants by more than 70% (Al and Fe) and 80% (Cu).


Subject(s)
Oils/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Norway , Transportation , Vehicle Emissions
4.
Article in English | MEDLINE | ID: mdl-12680576

ABSTRACT

Benzotriazole is a commonly used additive in aircraft de-icing fluids. As a result of extensive de-icing activities the compound is detected in the groundwater below de-icing platforms at several international airports. The compound is toxic, and not biodegradable. Laboratory tests have been performed to study if UV irradiation can degrade the compound and reduce the aquatic toxicity. Benzotriazole can be degraded by UV irradiation at pH values below 7. Approximately 65% reduction in the benzotriazole concentration was achieved at a dose of 320 mWs/cm2, and almost 90% reduction was achieved at 1070 mWs/cm2, with an apparent first order relation between the logarithm to the UV dose and the reduction. Benzotriazole is not significantly mineralised by UV irradiation, but transformed into other compounds, of which aniline and phenazine were identified. The metabolites show toxic effects, but they are not as toxic as benzotriazole, resulting in a general decrease in toxicity as a result of UV irradiation.


Subject(s)
Triazoles/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Aircraft , Hydrogen-Ion Concentration , Ice , Photochemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...