Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37688133

ABSTRACT

The emulsion polymerization process via which core-interlayer-shell polymer nanoparticles are synthesized is engineered to offer a crucial control of the eventual size and monodispersity of the polystyrene (PS) cores. We examine the role of key experimental parameters, optimizing the temperature, reactant purity, and agitation (stirring) rate. The subsequent addition of a poly(methyl-methacrylate) (PMMA) grafting layer and a poly(ethyl-acrylate) (PEA) shell layer produces composite particles, which are shear-orderable into opaline films, known as 'polymer opals'. We thus demonstrate pathways toward a 'dial-in' process, where the time taken to obtain the target core size is mapped to the expected resultant structural color. At reaction temperatures of 60 and 70 °C, viable conditions are found where all syntheses give an excellent level of monodispersity (polydispersity index < 0.02), suitable for interlayer and shell growth. These reports may be readily applied to a wider industrial scale fabrication pipeline for these polymeric photonic materials.

2.
Molecules ; 27(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35744899

ABSTRACT

We report on shear-ordered polymer photonic crystals demonstrating intense structural color with a photonic bandgap at 270 nm. Our work examines this UV structural color, originating from a low refractive index contrast polymer composite system as a function of the viewing angle. We report extensive characterization of the angle-dependent nature of this color in the form of 'scattering cones', which showed strong reflectivity in the 275-315 nm range. The viewing range of the scattering was fully quantified for a number of planes and angles, and we additionally discuss the unique spectral anisotropy observed in these structures. Such films could serve as low-cost UV reflection coatings with applications in photovoltaics due to the fact of their non-photobleaching and robust mechanical behavior in addition to their favorable optical properties.

3.
Materials (Basel) ; 14(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576523

ABSTRACT

A study is presented of the oscillatory shear-ordering dynamics of viscoelastic photonic crystal media, using an optical shear cell. The hard-sphere/"sticky"-shell design of these polymeric composite particles produces athermal, quasi-solid rubbery media, with a characteristic viscoelastic ensemble response to applied shear. Monotonic crystallization processes, as directly measured by the photonic stopband transmission, are tracked as a function of strain amplitude, oscillation frequency, and temperature. A complementary generic spatio-temporal model is developed of crystallization due to shear-dependent interlayer viscosity, giving propagating crystalline fronts with increasing applied strain, and a gradual transition from interparticle disorder to order. The introduction of a competing shear-induced flow degradation process, dependent on the global shear rate, gives solutions with both amplitude and frequency dependence. The extracted crystallization timescales show parametric trends which are in good qualitative agreement with experimental observations.

4.
Opt Express ; 28(24): 36219-36228, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379721

ABSTRACT

A three-dimensional goniometric study of thin-film polymer photonic crystals investigates how the chromaticity of structural color is correlated to structural ordering. Characterization of chromaticity and the angular properties of structural color are presented in terms of CIE 1931 color spaces. We examine the viewing angle dependency of the Bragg scattering cone relative to sample symmetry planes, and our results demonstrate how increased ordering influences angular scattering width and anisotropy. Understanding how the properties of structural color can be quantified and manipulated has significant implications for the manufacture of functional photonic crystals in sensors, smart fabrics, coatings, and other optical device applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...