Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Immunol Invest ; 51(2): 246-265, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32981399

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has posed a serious threat to public health. There is an urgent need for discovery methods for the prevention and treatment of COVID-19 infection. Understanding immunogenicity together with immune responses are expected to provide further information about this virus. We hope that this narrative review article may create new insights for researchers to take great strides toward designing vaccines and novel therapies in the near future. The functional properties of the immune system in COVID-19 infection is not exactly clarified yet. This is compounded by the many gaps in our understanding of the SARS-CoV-2 immunogenicity properties. Possible immune responses according to current literature are discussed as the first line of defense and acquired immunity. Here, we focus on proposed modern preventive immunotherapy methods in COVID-19 infection.


Subject(s)
COVID-19 , Adaptive Immunity , COVID-19 Vaccines , Humans , SARS-CoV-2
2.
Biomed Pharmacother ; 141: 111925, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34323695

ABSTRACT

Breast cancer (BC) is the most common type of malignancy in women. A subset of breast cancers show resistance to endocrine-based therapies. The estrogen receptor (ER) plays a critical role in developing hormone-dependent BC. Loss of ER contributes to resistance to tamoxifen therapy and may contribute to mortality. Thus, it is crucial to overcome this problem. Here, using luciferase reporter assays, qRT-PCR, and Western blot analyses, we demonstrate that the microRNA miR-486-5p targets HMGA1 mRNA, decreasing its mRNA and protein levels in ER-positive (ER+) BC cells. Consistently, miR-486-5p is significantly downregulated, whereas HMGA1 is considerably upregulated in ER+ BC samples. Remarkably, while both miR-486-5p and tamoxifen individually cause G2/M cell cycle arrest, combination treatment synergistically causes profound cell death, specifically in tamoxifen-resistant ER+ cells but not in tamoxifen-sensitive ER+ cells. Combined treatment with miR-486-5p and tamoxifen also additively reduces cell migration, invasion, colony formation, mammary spheroid formation and a CD24-CD44+ cell population, representing decreased cancer stemness. However, these phenomena are independent of the tamoxifen responsiveness of the ER+ BC cells. Thus, miR-486-5p and tamoxifen exhibit additive and synergistic tumor-suppressive effects, most importantly causing profound cell death specifically in tamoxifen-resistant BC cells. Therefore, our work suggests that combining miR-486-5p replacement therapy with tamoxifen treatment is a promising strategy to treat endocrine therapy-resistant BC.


Subject(s)
Antineoplastic Agents, Hormonal/administration & dosage , Breast Neoplasms/metabolism , Cell Death/drug effects , Drug Resistance, Neoplasm/drug effects , MicroRNAs/administration & dosage , Tamoxifen/administration & dosage , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Death/physiology , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/physiology , Female , HEK293 Cells , Humans , MCF-7 Cells , MicroRNAs/biosynthesis
3.
Life Sci ; 258: 118186, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32768586

ABSTRACT

Antioxidants are essential in preventing the formation and suppressing the activities of reactive nitrogen and oxygen species. The aim of this study was to review the role of antioxidants in cancer development or prevention. Antioxidants are believed to prevent and treat various types of malignancies. Currently, natural antioxidant compounds have been generally consumed to prevent and treat cancers. Certainly, phenolic compounds extracted from medicinal plants have opened a new prospect with respect to the prevention and treatment of cancers due to having antioxidant characteristics. However, some recently published studies have revealed that antioxidant compounds do not indicate absolute anti-tumor properties. Some antioxidants are helpful in cancer initiation and progression. Taken together, antioxidants demonstrate a two-faced nature toward cancer. However, it is required to conduct further cell culture and in vivo studies to confirm the exact role of antioxidants and then use them for efficient cancer treatments.


Subject(s)
Antioxidants/therapeutic use , Neoplasms/drug therapy , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Carcinogenesis/drug effects , Carcinogenesis/pathology , Drug Resistance, Neoplasm/drug effects , Humans , Neoplasm Metastasis , Neoplasms/pathology
4.
Expert Opin Ther Targets ; : 1-11, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32172636

ABSTRACT

Despite improved therapeutic strategies for early-stage breast cancer, the most common cancer type in women, relapse remains common and the underlying mechanisms for this progression remain poorly understood. To gain more insight, we studied the DNA-binding protein HMGA2 in breast cancer development and stemness. We demonstrated that HMGA2 is overexpressed in breast cancer tissues at the mRNA and protein levels (P value <0.0001). HMGA2 knockdown and overexpression in breast cancer cells revealed that HMGA2 promotes cell proliferation and protects against apoptosis via the intrinsic pathway. HMGA2 knockdown also causes cell cycle arrest in G2/M phase. In addition, we found that HMGA2 increases breast cancer cell migration and invasion (P value <0.001) and promotes the acquisition of cancer stem cell features, both in vitro, in colony formation (P value <0.01) and spheroid assays, and in breast cancer tissues. Overexpression of HMGA2 in breast cancer spurs the acquisition of several hallmarks of cancer, including increased cell proliferation, migration, invasion and stemness, and decreased apoptosis. Thus, targeting HMGA2 could represent an effective strategy to block breast cancer progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...