Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Ecol ; 92(12)2016 12.
Article in English | MEDLINE | ID: mdl-27660607

ABSTRACT

Nitrogen (N) pollution of freshwater, estuarine, and marine ecosystems is widespread and has numerous environmental and economic impacts. A portion of this excess N comes from urban watersheds comprised of natural and engineered ecosystems which can alter downstream N export. Studies of urban N cycling have focused on either specific ecosystems or on watershed-scale mass balances. Comparisons of specific N transformations across ecosystems are required to contextualize rates from individual studies. Here we reviewed urban N cycling in terrestrial, aquatic, and engineered ecosystems, and compared N processing in these urban ecosystem types to native reference ecosystems. We found that net N mineralization and net nitrification rates were enhanced in urban forests and riparian zones relative to reference ecosystems. Denitrification was highly variable across urban ecosystem types, but no significant differences were found between urban and reference denitrification rates. When focusing on urban streams, ammonium uptake was more rapid than nitrate uptake in urban streams. Additionally, reduction of stormwater runoff coupled with potential decreases in N concentration suggests that green infrastructure may reduce downstream N export. Despite multiple environmental stressors in urban environments, ecosystems within urban watersheds can process and transform N at rates similar to or higher than reference ecosystems.

2.
Environ Sci Technol ; 50(17): 9727-35, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27513635

ABSTRACT

The presence of pharmaceuticals, including illicit drugs in aquatic systems, is a topic of environmental significance because of their global occurrence and potential effects on aquatic ecosystems and human health, but few studies have examined the ecological effects of illicit drugs. We conducted a survey of several drug residues, including the potentially illicit drug amphetamine, at 6 stream sites along an urban to rural gradient in Baltimore, Maryland, U.S.A. We detected numerous drugs, including amphetamine (3 to 630 ng L(-1)), in all stream sites. We examined the fate and ecological effects of amphetamine on biofilm, seston, and aquatic insect communities in artificial streams exposed to an environmentally relevant concentration (1 µg L(-1)) of amphetamine. The amphetamine parent compound decreased in the artificial streams from less than 1 µg L(-1) on day 1 to 0.11 µg L(-1) on day 22. In artificial streams treated with amphetamine, there was up to 45% lower biofilm chlorophyll a per ash-free dry mass, 85% lower biofilm gross primary production, 24% greater seston ash-free dry mass, and 30% lower seston community respiration compared to control streams. Exposing streams to amphetamine also changed the composition of bacterial and diatom communities in biofilms at day 21 and increased cumulative dipteran emergence by 65% and 89% during the first and third weeks of the experiment, respectively. This study demonstrates that amphetamine and other biologically active drugs are present in urban streams and have the potential to affect both structure and function of stream communities.


Subject(s)
Amphetamine , Rivers/chemistry , Biofilms/drug effects , Diatoms/drug effects , Ecosystem
3.
Proc Natl Acad Sci U S A ; 113(27): 7580-3, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27335456

ABSTRACT

Decades of acid rain have acidified forest soils and freshwaters throughout montane forests of the northeastern United States; the resulting loss of soil base cations is hypothesized to be responsible for limiting rates of forest growth throughout the region. In 1999, an experiment was conducted that reversed the long-term trend of soil base cation depletion and tested the hypothesis that calcium limits forest growth in acidified soils. Researchers added 1,189 kg Ca(2+) ha(-1) as the pelletized mineral wollastonite (CaSiO3) to a 12-ha forested watershed within the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire. Significant increases in the pH and acid-neutralizing capacity of soils and streamwater resulted, and the predicted increase in forest growth occurred. An unanticipated consequence of this acidification mitigation experiment began to emerge a decade later, with marked increases in dissolved inorganic nitrogen (DIN) exports in streamwater from the treated watershed. By 2013, 30-times greater DIN was exported from this base-treated watershed than from adjacent reference watersheds, and DIN exports resulting from this experiment match or exceed earlier reports of inorganic N losses after severe ice-storm damage within the study watershed. The discovery that CaSiO3 enrichment can convert a watershed from a sink to a source of N suggests that numerous potential mechanisms drive watershed N dynamics and provides new insights into the influence of acid deposition mitigation strategies for both carbon cycling and watershed N export.


Subject(s)
Acid Rain , Calcium Compounds , Environmental Restoration and Remediation/methods , Forests , Nitrogen Cycle , Silicates , Fertilizers
4.
Integr Environ Assess Manag ; 12(2): 264-72, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26339869

ABSTRACT

As natural resources become increasingly limited, the value of restoring contaminated sites, both terrestrial and aquatic, becomes increasingly apparent. Traditionally, goals for remediation have been set before any consideration of goals for ecological restoration. The goals for remediation have focused on removing or limiting contamination whereas restoration goals have targeted the ultimate end use. Here, we present a framework for developing a comprehensive set of achievable goals for ecological restoration of contaminated sites to be used in concert with determining goals for remediation. This framework was developed during a Society of Environmental Toxicology and Chemistry (SETAC) and Society of Ecological Restoration (SER) cosponsored workshop that brought together experts from multiple countries. Although most members were from North America, this framework is designed for use internationally. We discuss the integration of establishing goals for both contaminant remediation and overall restoration, and the need to include both the restoration of ecological and socio-cultural-economic value in the context of contaminated sites. Although recognizing that in some countries there may be regulatory issues associated with contaminants and clean up, landscape setting and social drivers can inform the restoration goals. We provide a decision tree support tool to guide the establishment of restoration goals for contaminated ecosystems. The overall intent of this decision tree is to provide a framework for goal setting and to identify outcomes achievable given the contamination present at a site.


Subject(s)
Environmental Restoration and Remediation/methods , Goals , Conservation of Natural Resources , Ecosystem , Ecotoxicology , Environmental Monitoring
5.
Environ Toxicol Chem ; 34(10): 2385-94, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26287953

ABSTRACT

Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17-1.59 µg g(-1) Hg and 1.35-2.65 µg g(-1) Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ(15) N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6-100% and 56-100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries.


Subject(s)
Environmental Monitoring , Food Chain , Mercury/analysis , Rivers/chemistry , Selenium/analysis , Animals , Arizona , Colorado , Geography , Humans , Risk Factors
7.
PLoS One ; 8(9): e75715, 2013.
Article in English | MEDLINE | ID: mdl-24069440

ABSTRACT

Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT) and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem.


Subject(s)
Coloring Agents , Ecosystem , Light , Photolysis , Rhodamines/chemistry , Sunlight , Temperature
8.
Environ Sci Technol ; 47(15): 8923-30, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23865377

ABSTRACT

Triclosan (TCS) is a broad-spectrum antimicrobial compound that is incorporated into numerous consumer products. TCS has been detected in aquatic ecosystems across the U.S., raising concern about its potential ecological effects. We conducted a field survey and an artificial stream experiment to assess effects of TCS on benthic bacterial communities. Field sampling indicated that TCS concentrations in stream sediments increased with degree of urbanization. There was significant correlation between sediment TCS concentration and the proportion of cultivable benthic bacteria that were resistant to TCS, demonstrating that the levels of TCS present in these streams was affecting the native communities. An artificial stream experiment confirmed that TCS exposure could trigger increases in TCS resistance within cultivable benthic bacteria, and pyrosequencing analysis indicated that TCS resulted in decreased benthic bacterial diversity and shifts in bacterial community composition. One notable change was a 6-fold increase in the relative abundance of cyanobacterial sequences and a dramatic die-off of algae within the artificial streams. Selection of cyanobacteria over algae could have significant implications for higher trophic levels within streams. Finally, there were no observed effects of TCS on bacterial abundance or respiration rates, suggesting that bacterial density and function were highly resilient to TCS exposure.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Bacteria/drug effects , Triclosan/pharmacology , Bacteria/classification , Colony Count, Microbial , Drug Resistance, Bacterial , Phylogeny
9.
Ecol Appl ; 23(3): 583-93, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23734487

ABSTRACT

Pharmaceutical and personal care products are ubiquitous in surface waters but their effects on aquatic biofilms and associated ecosystem properties are not well understood. We measured in situ responses of stream biofilms to six common pharmaceutical compounds (caffeine, cimetidine, ciprofloxacin, diphenhydramine, metformin, ranitidine, and a mixture of each) by deploying pharmaceutical-diffusing substrates in streams in Indiana, Maryland, and New York. Results were consistent across seasons and geographic locations. On average, algal biomass was suppressed by 22%, 4%, 22%, and 18% relative to controls by caffeine, ciprofloxacin, diphenhydramine, and the mixed treatment, respectively. Biofilm respiration was significantly suppressed by caffeine (53%), cimetidine (51%), ciprofloxacin (91%), diphenhydramine (63%), and the mixed treatment (40%). In autumn in New York, photosynthesis was also significantly suppressed by diphenhydramine (99%) and the mixed treatment (88%). Pyrosequencing of 16S rRNA genes was used to examine the effects of caffeine and diphenhydramine on biofilm bacterial community composition at the three sites. Relative to the controls, diphenhydramine exposure significantly altered bacterial community composition and resulted in significant relative increases in Pseudomonas sp. and decreases in Flavobacterium sp. in all three streams. These ubiquitous pharmaceuticals, alone or in combination, influenced stream biofilms, which could have consequences for higher trophic levels and important ecosystem processes.


Subject(s)
Bacteria/drug effects , Biofilms/drug effects , Oxygen Consumption/drug effects , Pharmaceutical Preparations/chemistry , Rivers , Water Pollutants, Chemical/pharmacology , Bacteria/classification , Chlorophyll , Chlorophyll A , Ecosystem , Water Pollutants, Chemical/chemistry
10.
Appl Environ Microbiol ; 79(6): 1897-905, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23315724

ABSTRACT

In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization.


Subject(s)
Bacteria/classification , Biodiversity , Biota , Geologic Sediments/microbiology , Rivers/chemistry , Wastewater , Water Purification , Chicago , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
Ecol Appl ; 21(6): 2016-33, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21939041

ABSTRACT

Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, U.S.A., in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer-resource interactions were not necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.


Subject(s)
Floods , Food Chain , Invertebrates/physiology , Oncorhynchus mykiss/physiology , Rivers , Animals , Arizona , Feeding Behavior , Seasons , Time Factors , Water Movements
12.
Ecol Appl ; 20(7): 1949-60, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21049882

ABSTRACT

In the midwestern United States, maize detritus enters streams draining agricultural land. Genetically modified Bt maize is commonly planted along streams and can possibly affect benthic macroinvertebrates, specifically members of the order Trichoptera, which are closely related to target species of some Bt toxins and are important detritivores in streams. The significance of inputs of Bt maize to aquatic systems has only recently been recognized, and assessments of potential nontarget impacts on aquatic organisms are lacking. We conducted laboratory feeding trials and found that the leaf-shredding trichopteran, Lepidostoma liba, grew significantly slower when fed Bt maize compared to non-Bt maize, while other invertebrate taxa that we examined showed no negative effects. We also used field studies to assess the influence of Bt maize detritus on benthic macroinvertebrate abundance, diversity, biomass, and functional structure in situ in 12 streams adjacent to Bt maize or non-Bt maize fields. We found no significant differences in total abundance or biomass between Bt and non-Bt streams, and trichopterans comprised only a small percentage of invertebrate biomass at all sites (0-15%). Shannon diversity did not differ among Bt and non-Bt streams and was always low (H' range = 0.9-1.9). Highly tolerant taxa, such as oligochaetes and chironomids, were dominant in both Bt and non-Bt streams, and macroinvertebrate community composition was relatively constant across seasons. We used litterbags to examine macroinvertebrate colonization of Bt and non-Bt maize detritus and found no significant differences among litter or stream types. Our in situ findings did not support our laboratory results; this is likely because the streams we studied in this region are highly degraded and subject to multiple, persistent anthropogenic stressors (e.g., channelization, altered flow, nutrient and pesticide inputs). Invertebrate communities in these streams are a product of these degraded conditions, and thus the impact of a single stressor, such as Bt toxins, may not be readily discernable. Our results add to growing evidence that Bt toxins can have sublethal effects on nontarget aquatic taxa, but this evidence should be considered in the context of other anthropogenic impacts and alternative methods of pest control influencing streams draining agricultural regions.


Subject(s)
Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Invertebrates/drug effects , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Zea mays/genetics , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Bacterial Proteins/toxicity , Biodegradation, Environmental , Ecosystem , Endotoxins/chemistry , Endotoxins/toxicity , Environmental Monitoring , Hemolysin Proteins/chemistry , Hemolysin Proteins/toxicity , Plant Leaves , Plants, Genetically Modified
13.
Proc Natl Acad Sci U S A ; 107(41): 17645-50, 2010 Oct 12.
Article in English | MEDLINE | ID: mdl-20876106

ABSTRACT

Widespread planting of maize throughout the agricultural Midwest may result in detritus entering adjacent stream ecosystems, and 63% of the 2009 US maize crop was genetically modified to express insecticidal Cry proteins derived from Bacillus thuringiensis. Six months after harvest, we conducted a synoptic survey of 217 stream sites in Indiana to determine the extent of maize detritus and presence of Cry1Ab protein in the stream network. We found that 86% of stream sites contained maize leaves, cobs, husks, and/or stalks in the active stream channel. We also detected Cry1Ab protein in stream-channel maize at 13% of sites and in the water column at 23% of sites. We found that 82% of stream sites were adjacent to maize fields, and Geographical Information Systems analyses indicated that 100% of sites containing Cry1Ab-positive detritus in the active stream channel had maize planted within 500 m during the previous crop year. Maize detritus likely enters streams throughout the Corn Belt; using US Department of Agriculture land cover data, we estimate that 91% of the 256,446 km of streams/rivers in Iowa, Illinois, and Indiana are located within 500 m of a maize field. Maize detritus is common in low-gradient stream channels in northwestern Indiana, and Cry1Ab proteins persist in maize leaves and can be measured in the water column even 6 mo after harvest. Hence, maize detritus, and associated Cry1Ab proteins, are widely distributed and persistent in the headwater streams of a Corn Belt landscape.


Subject(s)
Bacterial Proteins/analysis , Endotoxins/analysis , Environmental Monitoring/statistics & numerical data , Hemolysin Proteins/analysis , Insecticides/analysis , Plant Components, Aerial/chemistry , Plants, Genetically Modified/genetics , Rivers/chemistry , Water Pollutants, Chemical/analysis , Zea mays/genetics , Agriculture , Bacillus thuringiensis Toxins , Geographic Information Systems , Indiana
14.
Ecol Appl ; 19(1): 133-42, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19323178

ABSTRACT

Headwater streams draining agricultural landscapes receive maize leaves (Zea mays L.) via wind and surface runoff, yet the contribution of maize detritus to organic-matter processing in agricultural streams is largely unknown. We quantified decomposition and microbial respiration rates on conventional (non-Bt) and genetically engineered (Bt) maize in three low-order agricultural streams in northwestern Indiana, USA. We also examined how substrate quality and in-stream nutrient concentrations influenced microbial respiration on maize by comparing respiration on maize and red maple leaves (Acer rubrum) in three nutrient-rich agricultural streams and three low-nutrient forested streams. We found significantly higher rates of microbial respiration on maize vs. red maple leaves and higher rates in agricultural vs. forested streams. Thus both the elevated nutrient status of agricultural streams and the lability of maize detritus (e.g., low carbon-to-nitrogen ratio and low lignin content) result in a rapid incorporation of maize leaves into the aquatic microbial food web. We found that Bt maize had a faster decomposition rate than non-Bt maize, while microbial respiration rates did not differ between Bt and non-Bt maize. Decomposition rates were not negatively affected by genetic engineering, perhaps because the Bt toxin does not adversely affect the aquatic microbial assemblage involved in maize decomposition. Additionally, shredding caddisflies, which are known to have suppressed growth rates when fed Bt maize, were depauperate in these agricultural streams, and likely did not play a major role in maize decomposition. Overall, the conversion of native vegetation to row-crop agriculture appears to have altered the quantity, quality, and predictability of allochthonous carbon inputs to headwater streams, with unexplored effects on stream ecosystem structure and function.


Subject(s)
Agriculture , Biodegradation, Environmental , Plant Leaves , Rivers , Zea mays , Bacillus thuringiensis Toxins , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Ecosystem , Endotoxins/analysis , Endotoxins/genetics , Hemolysin Proteins/analysis , Hemolysin Proteins/genetics , Rivers/chemistry , Time Factors , Water , Zea mays/genetics
15.
Ecology ; 89(10): 2935-45, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18959330

ABSTRACT

Given recent focus on large rivers as conduits for excess nutrients to coastal zones, their role in processing and retaining nutrients has been overlooked and understudied. Empirical measurements of nutrient uptake in large rivers are lacking, despite a substantial body of knowledge on nutrient transport and removal in smaller streams. Researchers interested in nutrient transport by rivers (discharge >10000 L/s) are left to extrapolate riverine nutrient demand using a modeling framework or a mass balance approach. To begin to fill this knowledge gap, we present data using a pulse method to measure inorganic nitrogen. (N) transport and removal in the Upper Snake River, Wyoming, USA (seventh order, discharge 12000 L/s). We found that the Upper Snake had surprisingly high biotic demand relative to smaller streams in the same river network for both ammonium (NH4+) and nitrate (NO3-). Placed in the context of a meta-analysis of previously published nutrient uptake studies, these data suggest that large rivers may have similar biotic demand for N as smaller tributaries. We also found that demand for different forms of inorganic N (NH4+ vs. NO3-) scaled differently with stream size. Data from rivers like the Upper Snake and larger are essential for effective water quality management at the scale of river networks. Empirical measurements of solute dynamics in large rivers are needed to understand the role of whole river networks (as opposed to stream reaches) in patterns of nutrient export at regional and continental scales.


Subject(s)
Nitrates/analysis , Nitrogen/analysis , Quaternary Ammonium Compounds/analysis , Rivers/chemistry , Water/chemistry , Ecosystem , Environmental Monitoring/methods , Eutrophication , Time Factors , Wyoming
17.
Environ Manage ; 38(1): 99-107, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16738823

ABSTRACT

Monitoring of stream restoration projects is often limited and success often focuses on a single taxon (e.g., salmonids), even though other aspects of stream structure and function may also respond to restoration activities. The Ottawa National Forest (ONF), Michigan, conducted a site-specific trout habitat improvement to enhance the trout fishery in Cook's Run, a 3rd-order stream that the ONF determined was negatively affected by past logging. Our objectives were to determine if the habitat improvement increased trout abundances and enhanced other ecological variables (overall habitat quality, organic matter retention, seston concentration, periphyton abundance, sediment organic matter content, and macroinvertebrate abundance and diversity) following rehabilitation. The addition of skybooms (underbank cover structures) and k-dams (pool-creating structures) increased the relative abundance of harvestable trout (>25 cm in total length) as intended but not overall trout abundances. Both rehabilitation techniques also increased maximum channel depth and organic matter retention, but only k-dams increased overall habitat quality. Neither approach significantly affected other ecological variables. The modest ecological response to this habitat improvement likely occurred because the system was not severely degraded beforehand, and thus small, local changes in habitat did not measurably affect most physical and ecological variables measured. However, increases in habitat volume and in organic matter retention may enhance stream biota in the long term.


Subject(s)
Conservation of Natural Resources , Ecosystem , Trout/physiology , Animals , Conservation of Natural Resources/methods , Fisheries , Fishes/physiology , Invertebrates/physiology , Michigan , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...