Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38585869

ABSTRACT

To gain insight into how ERG translocations cause prostate cancer, we performed single cell transcriptional profiling of an autochthonous mouse model at an early stage of disease initiation. Despite broad expression of ERG in all prostate epithelial cells, proliferation was enriched in a small, stem-like population with mixed-luminal basal identity (called intermediate cells). Through a series of lineage tracing and primary prostate tissue transplantation experiments, we find that tumor initiating activity resides in a subpopulation of basal cells that co-express the luminal genes Tmprss2 and Nkx3.1 (called BasalLum) but not in the larger population of classical Krt8+ luminal cells. Upon ERG activation, BasalLum cells give rise to the highly proliferative intermediate state, which subsequently transitions to the larger population of Krt8+ luminal cells characteristic of ERG-positive human cancers. Furthermore, this proliferative population is characterized by an ERG-specific chromatin state enriched for NFkB, AP-1, STAT and NFAT binding, with implications for TF cooperativity. The fact that the proliferative potential of ERG is enriched in a small stem-like population implicates the chromatin context of these cells as a critical variable for unmasking its oncogenic activity.

2.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38260364

ABSTRACT

Aspergillus fumigatus causes life-threatening mold pneumonia in immune compromised patients, particularly in those with quantitative or qualitative defects in neutrophils. While innate immune cell crosstalk licenses neutrophil antifungal activity in the lung, the role of epithelial cells in this process is unknown. Here, we find that that surfactant protein C (SPC)-expressing lung epithelial cells integrate infection-induced IL-1 and type III interferon signaling to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) preferentially at local sites of fungal infection and neutrophil influx. Using in vivo models that distinguish the role of GM-CSF during acute infection from its homeostatic function in alveolar macrophage survival and surfactant catabolism, we demonstrate that epithelial-derived GM-CSF increases the accumulation and fungicidal activity of GM-CSF-responsive neutrophils, with the latter being essential for host survival. Our findings establish SPC + epithelial cells as a central player in regulating the quality and strength of neutrophil-dependent immunity against inhaled mold pathogens. HIGHLIGHTS: GM-CSF is essential for host defense against A. fumigatus in the lung IL-1 and IFN-λ promote GM-CSF production by lung epithelial cells in parallelEpithelial cell-derived GM-CSF increases neutrophil accumulation and fungal killing capacityEpithelial cells preferentially upregulate GM-CSF in local sites of inflammation.

3.
Nat Immunol ; 24(9): 1434-1442, 2023 09.
Article in English | MEDLINE | ID: mdl-37500886

ABSTRACT

Cytotoxic T lymphocytes (CTLs) fight intracellular pathogens and cancer by identifying and destroying infected or transformed target cells1. To kill, CTLs form a specialized cytotoxic immune synapse (IS) with a target of interest and then release toxic perforin and granzymes into the interface to elicit programmed cell death2-5. The IS then dissolves, enabling CTLs to search for additional prey and professional phagocytes to clear the corpse6. While the mechanisms governing IS assembly have been studied extensively, far less is known about target cell release. Here, we applied time-lapse imaging to explore the basis for IS dissolution and found that it occurred concomitantly with the cytoskeletal contraction of apoptotic targets. Genetic and pharmacological perturbation of this contraction response indicated that it was both necessary and sufficient for CTL dissociation. We also found that mechanical amplification of apoptotic contractility promoted faster CTL detachment and serial killing. Collectively, these results establish a biophysical basis for IS dissolution and highlight the importance of mechanosensory feedback in the regulation of cell-cell interactions.


Subject(s)
Apoptosis , T-Lymphocytes, Cytotoxic , Apoptosis/genetics , Perforin , Granzymes
4.
Methods Mol Biol ; 2593: 233-244, 2023.
Article in English | MEDLINE | ID: mdl-36513935

ABSTRACT

Technologies for staining and imaging multiple antigens in single tissue sections are developing rapidly due to their potential to uncover spatial relationships between proteins with cellular resolution. Detections are performed simultaneously or sequentially depending on the approach. However, several technologies can detect limited numbers of antigens or require expensive equipment and reagents. Another serious concern is the lack of flexibility. Most commercialized reagents are validated for defined antibody panels, and introducing any changes is laborious and costly. In this chapter, we describe a method where we combine, for the first time, multiplexed IF followed by sequential immunohistochemistry (IHC) with AEC chromogen on Leica Bond staining processors with paraffin tissue sections. We present data for successful detection of 10 antigens in a single tissue section with preserved tissue integrity. Our method is designed for use with any combination of antibodies of interest, with images collected using whole slide scanners. We include an image viewing and image analysis workflow using nonlinear warping to combine all staining passes in a single full-resolution image of the entire tissue section, aligned at the single cell level.


Subject(s)
Biomarkers, Tumor , Proteins , Immunohistochemistry , Biomarkers, Tumor/metabolism , Fluorescent Antibody Technique , Staining and Labeling , Antigens/analysis
5.
Neoplasia ; 28: 100790, 2022 06.
Article in English | MEDLINE | ID: mdl-35398668

ABSTRACT

Mutations in IDH1 and IDH2 drive the development of gliomas. These genetic alterations promote tumor cell renewal, disrupt differentiation states, and induce stem-like properties. Understanding how this phenotypic reprogramming occurs remains an area of high interest in glioma research. Previously, we showed that IDH mutation results in the development of a CD24-positive cell population in gliomas. Here, we demonstrate that this CD24-positive population possesses striking stem-like properties at the molecular and phenotypic levels. We found that CD24 expression is associated with stem-like features in IDH-mutant tumors, a patient-derived gliomasphere model, and a neural stem cell model of IDH1-mutant glioma. In orthotopic models, CD24-positive cells display enhanced tumor initiating potency compared to CD24-negative cells. Furthermore, CD24 knockdown results in changes in cell viability, proliferation rate, and gene expression that closely resemble a CD24-negative phenotype. Our data demonstrate that induction of a CD24-positive population is one mechanism by which IDH-mutant tumors acquire stem-like properties. These findings have significant implications for our understanding of the molecular underpinnings of IDH-mutant gliomas.


Subject(s)
Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , Neoplastic Stem Cells , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , CD24 Antigen/genetics , CD24 Antigen/metabolism , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype
6.
PLoS One ; 13(3): e0193160, 2018.
Article in English | MEDLINE | ID: mdl-29505556

ABSTRACT

Dry state preservation at ambient temperatures (lyopreservation) is a biomimetic alternative to low temperature stabilization (cryopreservation) of biological materials. Lyopreservation is hypothesized to rely upon the creation of a glassy environment, which is commonly observed in desiccation-tolerant organisms. Non-uniformities in dried samples have been indicated as one of the reasons for instability in storage outcome. The current study presents a simple, fast, and uniform surface tension based technique that can be implemented for lyopreservation of mammalian cells. The technique involves withdrawing cells attached to rigid substrates to be submerged in a solution of lyoprotectant and then withdrawing the samples at a specific rate to an inert environment. This creates a uniform thin film of desiccated lyoprotectant due to sudden change of surface tension. The residual moisture contents at different locations in the desiccated film was quantified using a spatially resolved Raman microspectroscopy technique. Post-desiccation cellular viability and growth are quantified using fluorescent microscopy and dye exclusion assays. Cellular injury following desiccation is evaluated by bioenergetic quantification of metabolic functions using extracellular flux analysis and by a Raman microspectroscopic analysis of change in membrane structure. The technique developed here addresses an important bottleneck of lyoprocessing which requires the fast and uniform desiccation of cellular samples.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Energy Metabolism , Freeze Drying , Hep G2 Cells , Humans , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...