Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 28(6): 959-70, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18381276

ABSTRACT

Transpiration of two heterogeneous broad-leaved woodlands in southern England was monitored by the sap flux technique throughout the 2006 growing season. Grimsbury Wood, which had a leaf area index (LAI) of 3.9, was dominated by oak (Quercus robur L.) and birch (Betula pubescens L.) and had a continuous hazel (Corylus avellana L.) understory. Wytham Woods, which had an LAI of 3.6, was dominated by ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) and had only a sparse understory. Annual canopy transpiration was 367 mm for Grimsbury Wood and 397 mm for Wytham Woods. These values were similar to those for beech (Fagus sylvatica L.) plantations in the same region, and differ from one another by less than the typical margin of uncertainty of the sap flux technique. Canopy conductance (g(c)), calculated for both woodlands by inverting the Penman-Monteith equation, was related to incoming solar radiation (R(G)) and the vapor pressure deficit (D). The response of g(c) to R(G) was similar for both forests. Both reference conductance (g(cref)), defined as g(c) at D=1 kPa, and stomatal sensitivity (-m), defined as the slope of the logarithmic response curve of g(c) to D, increased during the growing season at Wytham Woods but not at Grimsbury Wood. The -m/g(cref) ratio was significantly lower at Wytham Woods than at Grimsbury Wood and was insufficient to keep the difference between leaf and soil water potentials constant, according to a simple hydraulic model. This meant that annual water consumption of the two woodlands was similar despite different regulatory mechanisms and associated short-term variations in canopy transpiration. The -m/g(cref) ratio depended on the range of D under which the measurements were made. This was shown to be particularly important for studies conducted under low and narrow ranges of D.


Subject(s)
Plant Leaves/physiology , Plant Transpiration/physiology , Trees/physiology , Acer/physiology , Betula/physiology , England , Fraxinus/physiology , Quercus/physiology , Seasons , Species Specificity , Temperature
2.
Tree Physiol ; 27(3): 321-33, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17241974

ABSTRACT

Transpiration from a hawthorn (Crataegus monogyna L.) dominated hedgerow in southern England was measured continuously over two growing seasons by the sap flow technique. Accompanying measurements of structural parameters, microclimate and leaf stomatal and boundary layer conductances were used to establish the driving factors of hedgerow transpiration. Observed transpiration rates, reaching peak values of around 8 mm day(-1) and a seasonal mean of about 3.5 mm day(-1), were higher than those reported for most other temperate deciduous woodlands, except short-rotation coppice and wet woodlands. The high rates were caused by the structural and physiological characteristics of hawthorn leaves, which exhibited much higher stomatal and boundary-layer conductances than those of the second-most abundant woody species in the hedgerow, field maple (Acer campestre L.). Only in the hot summer of 2003 did stomatal conductance, and thus transpiration, decrease substantially. The hedgerow canopy was always closely coupled to the atmosphere. Hedgerow transpiration equaled potential evaporation (calculated by the Priestley-Taylor formula) in 2003 and exceeded it in 2004, which meant that a substantial fraction of the energy (21% in 2003 and more than 37% in 2004) came from advection. Hedgerow canopy conductance (g(c)), as inferred from the sap flow data by inverting the Penman-Monteith equation, responded to solar radiation (R(G)) and vapor pressure deficit (D). Although the response to R(G) showed no systematic temporal variation, the response to D, described as g(c)(D) = g(cref) - mln(D), changed seasonally. The reference g(c) depended on leaf area index and the ratio of -m/g(cref) on long-term mean daytime D. A model is proposed based on these observations that predicts canopy conductance for the hawthorn hedge from standard weather data.


Subject(s)
Crataegus/physiology , Plant Transpiration/physiology , Seasons , Algorithms , Ecosystem , England , Plant Leaves/physiology
3.
Tree Physiol ; 19(8): 493-501, 1999 Jul.
Article in English | MEDLINE | ID: mdl-12651539

ABSTRACT

Fast-growing tree clones selected for biomass plantations are highly productive and therefore likely to use more water than the agricultural crops they replace. We report field measurements of transpiration through the summer of 1994 from two poplar clones, Beaupré (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh.) and Dorschkamp (P. deltoides x P. nigra L.), grown as unirrigated short-rotation coppice in southern England. Stand transpiration was quantified by scaling up from sap flow measurements made with the heat balance method in a sample of stems. Leaf conductances, leaf area development, meteorological variables and soil water deficit were also measured to investigate the response of the trees to the environment. High rates of transpiration were found for Beaupré. In June, when soil water was plentiful, the mean (+/- SD) transpiration rate over an 18-day period was 5.0 +/- 1.8 mm day(-1), reaching a maximum of 7.9 mm day(-1). Transpiration rates from Dorschkamp were lower, as a result of its lower leaf area index. High total leaf conductances were measured for both Beaupré (0.34 +/- 0.17 mol m(-2) s(-1)) and Dorschkamp (0.39 +/- 0.16 mol m(-2) s(-1)). Leaf conductance declined slightly with increasing atmospheric vapor pressure deficit in both clones, but only in Beaupré did leaf conductance decrease as soil water deficit increased.

SELECTION OF CITATIONS
SEARCH DETAIL
...