Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824131

ABSTRACT

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Subject(s)
Mitochondria , RNA, Transfer , Ribonuclease P , tRNA Methyltransferases , Humans , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Transfer/chemistry , Mitochondria/metabolism , Ribonuclease P/metabolism , Ribonuclease P/genetics , Ribonuclease P/chemistry , tRNA Methyltransferases/metabolism , tRNA Methyltransferases/genetics , tRNA Methyltransferases/chemistry , RNA Processing, Post-Transcriptional , Cryoelectron Microscopy , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , RNA, Mitochondrial/chemistry , Methylation , Nucleic Acid Conformation , Models, Molecular , RNA Precursors/metabolism , RNA Precursors/genetics
2.
Nucleic Acids Res ; 49(1): 504-518, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33300032

ABSTRACT

Mitomycin repair factor A represents a family of DNA helicases that harbor a domain of unknown function (DUF1998) and support repair of mitomycin C-induced DNA damage by presently unknown molecular mechanisms. We determined crystal structures of Bacillus subtilis Mitomycin repair factor A alone and in complex with an ATP analog and/or DNA and conducted structure-informed functional analyses. Our results reveal a unique set of auxiliary domains appended to a dual-RecA domain core. Upon DNA binding, a Zn2+-binding domain, encompassing the domain of unknown function, acts like a drum that rolls out a canopy of helicase-associated domains, entrapping the substrate and tautening an inter-domain linker across the loading strand. Quantification of DNA binding, stimulated ATPase and helicase activities in the wild type and mutant enzyme variants in conjunction with the mode of coordination of the ATP analog suggest that Mitomycin repair factor A employs similar ATPase-driven conformational changes to translocate on DNA, with the linker ratcheting through the nucleotides like a 'skipping rope'. The electrostatic surface topology outlines a likely path for the displaced DNA strand. Our results reveal unique molecular mechanisms in a widespread family of DNA repair helicases linked to bacterial antibiotics resistance.


Subject(s)
DNA Helicases/metabolism , DNA Repair , Models, Chemical , Nucleoside-Triphosphatase/metabolism , Adenosine Triphosphate/metabolism , Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , DNA/metabolism , DNA Damage , DNA Helicases/chemistry , DNA Helicases/classification , Drug Resistance, Microbial , Models, Molecular , Molecular Motor Proteins/metabolism , Multigene Family , Nucleoside-Triphosphatase/classification , Protein Binding , Protein Conformation , Protein Domains , Recombinant Proteins/chemistry , Static Electricity , Structure-Activity Relationship , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...