Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(20): 7031-7055, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37793073

ABSTRACT

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g., coupled-cluster) methods as well as developing novel codes that can take optimal advantage of graphical processing units and other modern accelerators. Because accurate wave functions can be very complex, an important new functionality in GAMESS is the quasi-atomic orbital analysis, an unbiased approach to the understanding of covalent bonds embedded in the wave function. Best practices for the maintenance and distribution of GAMESS are also discussed.

2.
J Chem Phys ; 152(15): 154102, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32321259

ABSTRACT

A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.

3.
J Chem Theory Comput ; 12(7): 3176-84, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27281508

ABSTRACT

The local multireference configuration interaction (LMRCI) and local multireference averaged coupled pair functional (LMRACPF) methods are extended to include explicit correlation via the universal spin-free [2]R12 basis set incompleteness correction. Four test cases are examined to measure the performance of the LMRCI+[2]R12 (without and with the Davidson + Q correction for size-extensivity) and LMRACPF+[2]R12 methods. These tests examine bond dissociation energies (BDEs) for ethene, perfluoroethene, propene, and 2-butene. As has been demonstrated for other methods, the LMRCI+[2]R12/LMRCI+Q+[2]R12/LMRACPF+[2]R12 BDEs are as accurate as the conventional LMRCI/LMRACPF BDEs that are computed with the basis set one cardinal number higher. It is shown that LMRCI+[2]R12/LMRCI+Q+[2]R12/LMRACPF+[2]R12 BDEs computed with the June calendar basis sets preserve the accuracy of the corresponding BDEs computed with the conventional aug-cc-pVXZ basis sets (where X = D, T, Q).

5.
J Phys Chem A ; 114(38): 10458-66, 2010 Sep 30.
Article in English | MEDLINE | ID: mdl-20812754

ABSTRACT

Free energies for the homolysis of the NO-C and N-OC bonds were compared for a large number of alkoxyamines at 298 and 393 K, both in the gas phase and in toluene solution. On this basis, the scope of the N-OC homolysis side reaction in nitroxide-mediated polymerization was determined. It was found that the free energies of NO-C and N-OC homolysis are not correlated, with NO-C homolysis being more dependent upon the properties of the alkyl fragment and N-OC homolysis being more dependent upon the structure of the aminyl fragment. Acyclic alkoxyamines and those bearing the indoline functionality have lower free energies of N-OC homolysis than other cyclic alkoxyamines, with the five-membered pyrrolidine and isoindoline derivatives showing lower free energies than the six-membered piperidine derivatives. For most nitroxides, N-OC homolysis is normally favored above NO-C homolysis only when a heteroatom that is α to the NOC carbon center stabilizes the NO-C bond and/or the released alkyl radical is not sufficiently stabilized. As part of this work, accurate methods for the calculation of free energies for the homolysis of alkoxyamines were determined. Accurate thermodynamic parameters to within 4.5 kJ mol(-1) of experimental values were found using an ONIOM approximation to G3(MP2)-RAD combined with PCM solvation energies at the B3-LYP/6-31G(d) level.


Subject(s)
Amines/chemistry , Nitric Oxide/chemistry , Free Radicals/chemistry , Molecular Dynamics Simulation , Molecular Structure , Quantum Theory , Thermodynamics
6.
J Phys Chem A ; 113(37): 10040-9, 2009 Sep 17.
Article in English | MEDLINE | ID: mdl-19739681

ABSTRACT

The systematic fragmentation method fragments a large molecular system into smaller pieces, in such a way as to greatly reduce the computational cost while retaining nearly the accuracy of the parent ab initio electronic structure method. In order to attain the desired (sub-kcal/mol) accuracy, one must properly account for the nonbonded interactions between the separated fragments. Since, for a large molecular species, there can be a great many fragments and therefore a great many nonbonded interactions, computations of the nonbonded interactions can be very time-consuming. The present work explores the efficacy of employing the effective fragment potential (EFP) method to obtain the nonbonded interactions since the EFP method has been shown previously to capture nonbonded interactions with an accuracy that is often comparable to that of second-order perturbation theory. It is demonstrated that for nonbonded interactions that are not high on the repulsive wall (generally >2.7 A), the EFP method appears to be a viable approach for evaluating the nonbonded interactions. The efficacy of the EFP method for this purpose is illustrated by comparing the method to ab initio methods for small water clusters, the ZOVGAS molecule, retinal, and the alpha-helix. Using SFM with EFP for nonbonded interactions yields an error of 0.2 kcal/mol for the retinal cis-trans isomerization and a mean error of 1.0 kcal/mol for the isomerization energies of five small (120-170 atoms) alpha-helices.

7.
J Phys Chem B ; 113(29): 9646-63, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19368406

ABSTRACT

Three exciting new methods that address the accurate prediction of processes and properties of large molecular systems are discussed. The systematic fragmentation method (SFM) and the fragment molecular orbital (FMO) method both decompose a large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in very different ways that are designed to both retain the high accuracy of the chosen quantum mechanical level of theory while greatly reducing the demands on computational time and resources. Each of these methods is inherently scalable and is therefore eminently capable of taking advantage of massively parallel computer hardware while retaining the accuracy of the corresponding electronic structure method from which it is derived. The effective fragment potential (EFP) method is a sophisticated approach for the prediction of nonbonded and intermolecular interactions. Therefore, the EFP method provides a way to further reduce the computational effort while retaining accuracy by treating the far-field interactions in place of the full electronic structure method. The performance of the methods is demonstrated using applications to several systems, including benzene dimer, small organic species, pieces of the alpha helix, water, and ionic liquids.

SELECTION OF CITATIONS
SEARCH DETAIL
...