Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 36(17): e9331, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35671084

ABSTRACT

RATIONALE: Staurolite is an important mineral that can reveal much about metamorphic processes. For instance, it dominates the Fe-Mg exchange reactions in amphibolite-facies rocks between about 550 and 700°C, and can be also found at suprasolidus conditions. Staurolite contains a variable amount of OH in its structure, whose determination is a key petrological parameter. However, staurolite is often compositionally zoned, fine-grained, and may contain abundant inclusions. This makes conventional water analysis (e.g., Fourier transform infrared (FTIR) spectroscopy or by chemical titration) unsuitable. With its high sensitivity at high spatial resolution, Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) is potentially a valuable tool for determining water contents in staurolite. However a calibration with relevant standards covering a large range of water content is required to obtain accurate and reliable analyses, because matrix effects typically prevent direct quantification of water content by SIMS techniques. METHODS: In this study, a calibration for NanoSIMS analyses of water content by using minerals with crystallographic structures comparable to that of staurolite (i.e., amphibole and kyanite, an inosilicate and a nesosilicate, respectively) has been developed. RESULTS: Water measurements in an inclusion-free crystal from Pizzo Forno, Ticino, Switzerland, by FTIR spectroscopy (1.56 ± 0.14 wt% H2 O) and by Elastic Recoil Detection Analysis (ERDA) (1.58 ± 0.15 wt% H2 O) are consistent with NanoSIMS results (1.56 ± 0.04 wt% H2 O). CONCLUSIONS: This implies that our approach can accurately account for NanoSIMS matrix effects in the case of staurolite. With this calibration, it is now possible to investigate variations in water content at the microscale in metamorphic minerals exhibiting high spatial variability and/or very small size (few micrometers).


Subject(s)
Spectrometry, Mass, Secondary Ion , Water , Minerals , Spectrometry, Mass, Secondary Ion/methods , Spectroscopy, Fourier Transform Infrared , Water/analysis
2.
J Synchrotron Radiat ; 25(Pt 5): 1581-1599, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30179200

ABSTRACT

The synchrotron radiation technique of nuclear resonant inelastic X-ray scattering (NRIXS), also known as nuclear resonance vibrational spectroscopy or nuclear inelastic scattering, provides a wealth of information on the vibrational properties of solids. It has found applications in studies of lattice dynamics and elasticity, superconductivity, heme biochemistry, seismology, isotope geochemistry and many other fields. It involves probing the vibrational modes of solids by using the nuclear resonance of Mössbauer isotopes such as 57Fe, 83Kr, 119Sn, 151Eu and 161Dy. After data reduction, it provides the partial phonon density of states of the Mössbauer isotope that is investigated, as well as many other derived quantities such as the mean force constant of the chemical bonds and the Debye velocity. The data reduction is, however, not straightforward and involves removal of the elastic peak, normalization and Fourier-Log transformation. Furthermore, some of the quantities derived are highly sensitive to details in the baseline correction. A software package and several novel procedures to streamline and hopefully improve the reduction of the NRIXS data generated at sector 3ID of the Advanced Photon Source have been developed. The graphical user interface software is named SciPhon and runs as a Mathematica package. It is easily portable to other platforms and can be easily adapted for reducing data generated at other beamlines. Several tests and comparisons are presented that demonstrate the usefulness of this software, whose results have already been used in several publications. Here, the SciPhon software is used to reduce Kr, Sn, Eu and Dy NRIXS data, and potential implications for interpreting natural isotopic variations in those systems are discussed.

3.
Nat Commun ; 8: 14377, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28216664

ABSTRACT

The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure-temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ∼0-0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation.

4.
Nat Commun ; 6: 8567, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26461170

ABSTRACT

Primitive carbonaceous chondrites contain a large array of organic compounds dominated by insoluble organic matter (IOM). A striking feature of this IOM is the systematic enrichment in deuterium compared with the solar hydrogen reservoir. This enrichment has been taken as a sign of low-temperature ion-molecule or gas-grain reactions. However, the extent to which Solar System processes, especially ionizing radiation, can affect D/H ratios is largely unknown. Here, we report the effects of electron irradiation on the hydrogen isotopic composition of organic precursors containing different functional groups. From an initial terrestrial composition, overall D-enrichments and differential intramolecular fractionations comparable with those measured in the Orgueil meteorite were induced. Therefore, ionizing radiation can quantitatively explain the deuteration of organics in some carbonaceous chondrites. For these meteorites, the precursors of the IOM may have had the same isotopic composition as the main water reservoirs of the inner Solar System.

SELECTION OF CITATIONS
SEARCH DETAIL
...