Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 23(6): 1348-1360, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37122140

ABSTRACT

As whole-genome sequencing has become pervasive, some have suggested that reduced genomic representation approaches, for example, sequence capture, are becoming obsolete. In the present study, we argue that these techniques still provide excellent tools in terms of price and quality of data as well as in their ability to provide markers with specific features, as required, for example, in phylogenomics. A potential drawback of the wide-scale application of reduced representation approaches could be their drop in efficiency with increasing phylogenetic distance from the reference species. While some studies have focused on the degree and performance of reduced representation techniques in such situations, to our knowledge, none of them evaluated their applicability to inter-specific hybrids and polyploids. This highlights a significant gap in current knowledge since there is increasing evidence for the frequent occurrence of natural hybrids and polyploids, as well as for the major importance of both phenomena in evolution. The main aim of the present study was to carry out a thorough validation of SEQcap applicability to (1) a set of non-model taxa with a wide range of phylogenetic relatedness and (2) inter-specific hybrids of various ploidies and genomic compositions. Considering the latter point, we especially focused on mechanisms causing allelic bias and consequent allelic dropout, as these could have confounding effects with respect to the evolutionary genomic dynamics of hybrids, especially in asexuals, which virtually reproduce as a frozen F1 generation.


Subject(s)
Genome , Polyploidy , Humans , Phylogeny , Ploidies , Genomics
2.
Mol Biol Evol ; 38(12): 5255-5274, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34410426

ABSTRACT

Hybridization and genome duplication have played crucial roles in the evolution of many animal and plant taxa. The subgenomes of parental species undergo considerable changes in hybrids and polyploids, which often selectively eliminate segments of one subgenome. However, the mechanisms underlying these changes are not well understood, particularly when the hybridization is linked with asexual reproduction that opens up unexpected evolutionary pathways. To elucidate this problem, we compared published cytogenetic and RNAseq data with exome sequences of asexual diploid and polyploid hybrids between three fish species; Cobitis elongatoides, C. taenia, and C. tanaitica. Clonal genomes remained generally static at chromosome-scale levels but their heterozygosity gradually deteriorated at the level of individual genes owing to allelic deletions and conversions. Interestingly, the impact of both processes varies among animals and genomic regions depending on ploidy level and the properties of affected genes. Namely, polyploids were more tolerant to deletions than diploid asexuals where conversions prevailed, and genomic restructuring events accumulated preferentially in genes characterized by high transcription levels and GC-content, strong purifying selection and specific functions like interacting with intracellular membranes. Although hybrids were phenotypically more similar to C. taenia, we found that they preferentially retained C. elongatoides alleles. This demonstrates that favored subgenome is not necessarily the transcriptionally dominant one. This study demonstrated that subgenomes in asexual hybrids and polyploids evolve under a complex interplay of selection and several molecular mechanisms whose efficiency depends on the organism's ploidy level, as well as functional properties and parental ancestry of the genomic region.


Subject(s)
Cypriniformes , Polyploidy , Animals , Cypriniformes/genetics , Diploidy , Evolution, Molecular , Genome, Plant , Hybridization, Genetic , Loss of Heterozygosity
3.
Mol Ecol ; 29(16): 3038-3055, 2020 08.
Article in English | MEDLINE | ID: mdl-32627290

ABSTRACT

Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.


Subject(s)
Biological Evolution , Reproduction , Animals , Emotions , Genome , Models, Genetic , Mutation , Reproduction/genetics , Reproduction, Asexual/genetics
4.
Mol Biol Evol ; 36(9): 1902-1920, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31077330

ABSTRACT

Hybridization and polyploidization are important evolutionary processes whose impacts range from the alteration of gene expression and phenotypic variation to the triggering of asexual reproduction. We investigated fishes of the Cobitis taenia-elongatoides hybrid complex, which allowed us to disentangle the direct effects of both processes, due to the co-occurrence of parental species with their diploid and triploid hybrids. Employing morphological, ecological, and RNAseq approaches, we investigated the molecular determinants of hybrid and polyploid forms. In contrast with other studies, hybridization and polyploidy induced relatively very little transgressivity. Instead, Cobitis hybrids appeared intermediate with a clear effect of genomic dosing when triploids expressed higher similarity to the parent contributing two genome sets. This dosage effect was symmetric in the germline (oocyte gene expression), interestingly though, we observed an overall bias toward C. taenia in somatic tissues and traits. At the level of individual genes, expression-level dominance vastly prevailed over additivity or transgressivity. Also, trans-regulation of gene expression was less efficient in diploid hybrids than in triploids, where the expression modulation of homoeologs derived from the "haploid" parent was stronger than those derived from the "diploid" parent. Our findings suggest that the apparent intermediacy of hybrid phenotypes results from the combination of individual genes with dominant expression rather than from simple additivity. The efficiency of cross-talk between trans-regulatory elements further appears dosage dependent. Important effects of polyploidization may thus stem from changes in relative concentrations of trans-regulatory elements and their binding sites between hybridizing genomes. Links between gene regulation and asexuality are discussed.


Subject(s)
Cypriniformes/genetics , Gene Expression Regulation , Hybridization, Genetic , Polyploidy , Reproduction, Asexual , Animals , Cypriniformes/anatomy & histology , Cypriniformes/metabolism , Ecosystem , Female , Male , Phenotype
5.
Mol Ecol ; 27(1): 248-263, 2018 01.
Article in English | MEDLINE | ID: mdl-28987005

ABSTRACT

Although sexual reproduction is ubiquitous throughout nature, the molecular machinery behind it has been repeatedly disrupted during evolution, leading to the emergence of asexual lineages in all eukaryotic phyla. Despite intensive research, little is known about what causes the switch from sexual reproduction to asexuality. Interspecific hybridization is one of the candidate explanations, but the reasons for the apparent association between hybridization and asexuality remain unclear. In this study, we combined cross-breeding experiments with population genetic and phylogenomic approaches to reveal the history of speciation and asexuality evolution in European spined loaches (Cobitis). Contemporary species readily hybridize in hybrid zones, but produce infertile males and fertile but clonally reproducing females that cannot mediate introgressions. However, our analysis of exome data indicates that intensive gene flow between species has occurred in the past. Crossings among species with various genetic distances showed that, while distantly related species produced asexual females and sterile males, closely related species produce sexually reproducing hybrids of both sexes. Our results suggest that hybridization leads to sexual hybrids at the initial stages of speciation, but as the species diverge further, the gradual accumulation of reproductive incompatibilities between species could distort their gametogenesis towards asexuality. Interestingly, comparative analysis of published data revealed that hybrid asexuality generally evolves at lower genetic divergences than hybrid sterility or inviability. Given that hybrid asexuality effectively restricts gene flow, it may establish a primary reproductive barrier earlier during diversification than other "classical" forms of postzygotic incompatibilities. Hybrid asexuality may thus indirectly contribute to the speciation process.


Subject(s)
Cypriniformes/genetics , Genetic Speciation , Hybridization, Genetic , Reproduction, Asexual/genetics , Zygote/physiology , Animals , Crosses, Genetic , Female , Genetic Variation , Genetics, Population , Geography , Haplotypes/genetics , Male , Reproductive Isolation , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...