Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ozone Sci Eng ; 39(1): 61-66, 2017.
Article in English | MEDLINE | ID: mdl-29170573

ABSTRACT

Whole blood is a complex mixture of biological and chemical species. Its pretreatment, which is often conducted by dry ashing, is needed before the analyses of trace metals in whole blood. Recently photo-Fenton Advanced Oxidation Process (AOP) process has been used in the pretreatment of whole blood. Two new AOP processes using simple heating and microwave irradiation have been developed in the current work to pretreat blood samples. The treatments are based on a Fenton-like AOP with acid deactivation of the enzyme catalase. The first treatment is performed with a lab oven over 5 h, while the second uses microwave irradiation for 6 min. These methods allow for either cost-effective pretreatment through the use of the lab oven, or time savings through the use of the microwave oven. The degradations of blood and pure hemoglobin samples are compared through UV/visible spectroscopy, and the copper concentration in the treated samples were analyzed via anodic stripping voltammetry as a demonstration of analyzing trace metals in the pretreated whole blood.

2.
Anal Chim Acta ; 914: 47-52, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-26965326

ABSTRACT

Anodic stripping voltammetry, a classical electroanalytical method has been optimized to analyze trace Pd(II) in active pharmaceutical ingredient matrices. The electroanalytical approach with an unmodified glassy carbon electrode was performed in both aqueous and 95% DMSO/5% water (95/5 DMSO/H2O) solutions, without pretreatment such as acid digestion or dry ashing to remove the organics. Limits of detection (LODs) in the presence of caffeine and ketoprofen were determined to be 11 and 9.6 µg g(-1), with a relative standard deviation (RSD) of 5.7% and 2.3%, respectively. This method is simple, highly reproducible, sensitive, and robust. The instrumentation has the potential to be portable and the obviation of sample pretreatment makes it an ideal approach for determining lost catalytic metals in pharmaceutical-related industries. Furthermore, the simultaneous detection of Pd(II) with Cd(II) and Pb(II) in the low µg L(-1) range indicates that this system is capable of simultaneous multi-analyte analysis in a variety of matrices.


Subject(s)
Electrochemical Techniques/methods , Electrodes , Palladium/analysis , Pharmaceutical Preparations/chemistry
3.
Anal Chem ; 88(3): 1553-8, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26742539

ABSTRACT

A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported.


Subject(s)
Bismuth/chemistry , Gases/analysis , Hydrogen Sulfide/analysis , Paper , Environmental Monitoring , Humans , Hydrogen-Ion Concentration , Particle Size , Porosity , Surface Properties
4.
J Electroanal Chem (Lausanne) ; 781: 120-125, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-28167882

ABSTRACT

A pyridine-functionalized thin film has been fabricated to selectively preconcentrate Cr(VI) anions for electrochemical detection in the 5-300 µg L-1 range. Glassy carbon electrodes were modified through physical deposition of single-walled carbon nanotubes (SWNTs) on the electrode surface, followed by electrochemical deposition of a sol-gel containing a 2-pyridine functional group. The use of SWNTs has increased sensitivity for Cr(VI) detection in aqueous solutions, providing a detection limit of 0.8 µg L-1.

5.
Anal Chim Acta ; 893: 25-33, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26398419

ABSTRACT

A new electrochemical method has been developed to detect and quantify the elemental impurities, cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)), either simultaneously or individually in pharmaceutical matrices. The electro-analytical approach, involving the use of anodic stripping voltammetry (ASV) on an unmodified glassy carbon electrode, was performed in both aqueous and in a 95/5 dimethyl sulfoxide (DMSO)/water solutions, without acid digestion or dry ashing to remove organic matrices. Limits of detection (LODs) in the µg L(-1) [or parts per billion (ppb), mass/volume] range were obtained for both heavy metals - in the presence and absence of representative pharmaceutical components. To the best of our knowledge, the work demonstrates the first analysis of heavy metals in DMSO/water solutions through ASV. The strong reproducibility and stability of the sensing platform, as well as obviation of sample pretreatment show the promise of utilizing ASV as a sensitive, robust, and inexpensive alternative to inductively-coupled-plasma (ICP)-based approaches for the analysis of elemental impurities in, e.g., pharmaceutical-related matrices.


Subject(s)
Cadmium/analysis , Dimethyl Sulfoxide/chemistry , Electrochemical Techniques , Lead/analysis , Pharmaceutical Preparations/chemistry , Water/chemistry , Caffeine/chemistry , Electrodes , Lactose/chemistry , Limit of Detection , Metals, Heavy/analysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...