Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(2): 025115, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33648082

ABSTRACT

Atomic layer deposition (ALD) is an industrially applied technique for thin film deposition. The vast majority of processes target flat substrates rather than powders. For ALD on powders, new processes are needed, as different reaction conditions are required. Here, two setups are described in detail, which enhance the ALD process development for powders. The first setup described is capable of directly measuring the vapor pressure of a given precursor by a capacitance diaphragm gauge. Promising precursors can be pre-selected, and suitable precursor saturation temperatures can be determined. The second setup consists of four parallel reactors with individual temperature zones to screen the optimal ALD temperature window in a time efficient way. Identifying the precursor saturation temperature beforehand and subsequently performing the first ALD half cycle in the parallel setup at four different reactor temperatures simultaneously will drastically reduce process development times. Validation of both setups is shown for the well-known ALD precursors, trimethylaluminum to deposit aluminum oxide and diethyl zinc to deposit zinc oxide, both on amorphous silica powder.

2.
Rev Sci Instrum ; 88(7): 074102, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28764543

ABSTRACT

A modular setup for Atomic Layer Deposition (ALD) on high-surface powder substrates in fixed bed reactors with a gravimetric in situ monitoring was developed. The design and operation are described in detail. An integrated magnetically suspended balance records mass changes during ALD. The highly versatile setup consists of three modular main units: a dosing unit, a reactor unit, and a downstream unit. The reactor unit includes the balance, a large fixed bed reactor, and a quartz crystal microbalance. The dosing unit is equipped with a complex manifold to deliver gases and gaseous reagents including three different ALD precursors, five oxidizing or reducing agents, and two purge gas lines. The system employs reactor temperatures and pressures in the range of 25-600 °C and 10-3 to 1 bar, respectively. Typically, powder batches between 100 mg and 50 g can be coated. The capabilities of the setup are demonstrated by coating mesoporous SiO2 powder with a thin AlOx (submono) layer using three cycles with trimethylaluminium and H2O. The self-limiting nature of the deposition has been verified with the in situ gravimetric monitoring and full saturation curves are presented. The process parameters were used for a scale-up in a large fixed bed reactor. The samples were analyzed with established analytics such as X-ray diffraction, N2 adsorption, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry.

3.
Chem Commun (Camb) ; 50(92): 14440-2, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25302934

ABSTRACT

The oxidative coupling of methane is a highly promising reaction for its direct conversion. Silica supported Mn(x)O(y)-Na2WO4 is a suitable catalyst for this reaction. In this study, a variety of different SiO2 materials have been tested as supports. Surprisingly, the application of ordered mesoporous silicas, here exemplarily shown for SBA-15 as support materials, greatly enhances the catalytic performance. The CH4 conversion increased two fold and also the C2 selectivity is strongly increased.

SELECTION OF CITATIONS
SEARCH DETAIL
...