Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1392016, 2024.
Article in English | MEDLINE | ID: mdl-38746744

ABSTRACT

Consumption of dietary fiber has been linked to several health benefits. Among these, dietary fiber breakdown through the process of anaerobic fermentation by the colonic microbiota leads to the production of beneficial metabolites, mainly short-chain fatty acids (acetate, propionate, and butyrate), which have been implicated in reduced calorie intake. Nevertheless, the link between gut microbiota and obesity remains unclear. We investigated the effects of dietary fibers on food intake and body weight gain in two independent but similarly designed studies in rats. In the first study, the inclusion of 10% w/w pectin, fructooligosaccharides or beta-glucan (n = 10/group) in the diets each significantly reduced body weight gain ('responders') compared to the cellulose control whereas, in a closely matched, but not fully identical study (n = 8/group), no effect of dietary fiber on body weight ('non-responders') was observed. The aim of this work was to explore the basis of this differential response between the two similarly designed and comparable studies, with a focus on the potential role of the gut microbiota in the control of food intake and body weight.

2.
Sci Rep ; 8(1): 15648, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353127

ABSTRACT

Hypothalamic inflammation is thought to contribute to obesity. One potential mechanism is via gut microbiota derived bacterial lipopolysaccharide (LPS) entering into the circulation and activation of Toll-like receptor-4. This is called metabolic endotoxemia. Another potential mechanism is systemic inflammation arising from sustained exposure to high-fat diet (HFD) over more than 12 weeks. In this study we show that mice fed HFD over 8 weeks become obese and show elevated plasma LPS binding protein, yet body weight gain and adiposity is not attenuated in mice lacking Tlr4 or its co-receptor Cd14. In addition, caecal microbiota composition remained unchanged by diet. Exposure of mice to HFD over a more prolonged period (20 weeks) to drive systemic inflammation also caused obesity. RNAseq used to assess hypothalamic inflammation in these mice showed increased hypothalamic expression of Serpina3n and Socs3 in response to HFD, with few other genes altered. In situ hybridisation confirmed increased Serpina3n and Socs3 expression in the ARC and DMH at 20-weeks, but also at 8-weeks and increased SerpinA3N protein could be detected as early as 1 week on HFD. Overall these data show lack of hypothalamic inflammation in response to HFD and that metabolic endotoxemia does not link HFD to obesity.


Subject(s)
Acute-Phase Proteins/genetics , Diet, High-Fat/adverse effects , Endotoxemia/complications , Obesity/etiology , Serpins/genetics , Toll-Like Receptor 4/immunology , Up-Regulation , Animals , Endotoxemia/genetics , Endotoxemia/immunology , Endotoxemia/pathology , Gastrointestinal Microbiome , Gene Expression Regulation , Genotype , Hypothalamus/immunology , Hypothalamus/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/immunology , Obesity/pathology , Signal Transduction , Toll-Like Receptor 4/genetics
3.
Cell Rep ; 21(6): 1521-1533, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29117558

ABSTRACT

Evidence suggests that altered gut microbiota composition may be involved in the development of obesity. Studies using mice made obese with refined high-fat diets have supported this; however, these have commonly used chow as a control diet, introducing confounding factors from differences in dietary composition that have a key role in shaping microbiota composition. We compared the effects of feeding a refined high-fat diet with those of feeding either a refined low-fat diet or a chow diet on gut microbiota composition and host physiology. Feeding both refined low- or high-fat diets resulted in large alterations in the gut microbiota composition, intestinal fermentation, and gut morphology, compared to a chow diet. However, body weight, body fat, and glucose intolerance only increased in mice fed the refined high-fat diet. The choice of control diet can dissociate broad changes in microbiota composition from obesity, raising questions about the previously proposed relationship between gut microbiota and obesity.


Subject(s)
Gastrointestinal Microbiome/physiology , Obesity/etiology , Animals , Bacteroidetes/genetics , Bacteroidetes/growth & development , Bacteroidetes/isolation & purification , Blood Glucose/analysis , Body Weight , Cecum/microbiology , Chromatography, High Pressure Liquid , Diet, High-Fat , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Feces/microbiology , Firmicutes/genetics , Firmicutes/growth & development , Firmicutes/isolation & purification , Glucose Intolerance/metabolism , Glucose Intolerance/microbiology , Glucose Intolerance/pathology , Ileum/microbiology , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/microbiology , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/isolation & purification , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA
4.
PLoS One ; 11(5): e0155871, 2016.
Article in English | MEDLINE | ID: mdl-27224646

ABSTRACT

Dietary constituents that suppress appetite, such as dietary fibre and protein, may aid weight loss in obesity. The soluble fermentable dietary fibre pectin promotes satiety and decreases adiposity in diet-induced obese rats but effects of increased protein are unknown. Adult diet-induced obese rats reared on high fat diet (45% energy from fat) were given experimental diets ad libitum for 4 weeks (n = 8/group): high fat control, high fat with high protein (40% energy) as casein or pea protein, or these diets with added 10% w/w pectin. Dietary pectin, but not high protein, decreased food intake by 23% and induced 23% body fat loss, leading to 12% lower final body weight and 44% lower total body fat mass than controls. Plasma concentrations of satiety hormones PYY and total GLP-1 were increased by dietary pectin (168% and 151%, respectively) but not by high protein. Plasma leptin was decreased by 62% on pectin diets and 38% on high pea (but not casein) protein, while plasma insulin was decreased by 44% on pectin, 38% on high pea and 18% on high casein protein diets. Caecal weight and short-chain fatty acid concentrations in the caecum were increased in pectin-fed and high pea protein groups: caecal succinate was increased by pectin (900%), acetate and propionate by pectin (123% and 118%, respectively) and pea protein (147% and 144%, respectively), and butyrate only by pea protein (309%). Caecal branched-chain fatty acid concentrations were decreased by pectin (down 78%) but increased by pea protein (164%). Therefore, the soluble fermentable fibre pectin appeared more effective than high protein for increasing satiety and decreasing caloric intake and adiposity while on high fat diet, and produced a fermentation environment more likely to promote hindgut health. Altogether these data indicate that high fibre may be better than high protein for weight (fat) loss in obesity.


Subject(s)
Adiposity/drug effects , Body Weight/drug effects , Caseins/pharmacology , Cecum , Dietary Fats/adverse effects , Dietary Fiber/pharmacology , Obesity , Pectins/pharmacology , Pisum sativum , Plant Proteins, Dietary/pharmacology , Satiety Response/drug effects , Animals , Cecum/metabolism , Cecum/microbiology , Dietary Fats/pharmacology , Male , Obesity/chemically induced , Obesity/metabolism , Obesity/microbiology , Rats , Rats, Sprague-Dawley
5.
Sci Rep ; 6: 26830, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225311

ABSTRACT

Long-term and reversible changes in body weight are typical of seasonal animals. Thyroid hormone (TH) and retinoic acid (RA) within the tanycytes and ependymal cells of the hypothalamus have been implicated in the photoperiodic response. We investigated signalling downstream of RA and how this links to the control of body weight and food intake in photoperiodic F344 rats. Chemerin, an inflammatory chemokine, with a known role in energy metabolism, was identified as a target of RA. Gene expression of chemerin (Rarres2) and its receptors were localised within the tanycytes and ependymal cells, with higher expression under long (LD) versus short (SD) photoperiod, pointing to a physiological role. The SD to LD transition (increased food intake) was mimicked by 2 weeks of ICV infusion of chemerin into rats. Chemerin also increased expression of the cytoskeletal protein vimentin, implicating hypothalamic remodelling in this response. By contrast, acute ICV bolus injection of chemerin on a 12 h:12 h photoperiod inhibited food intake and decreased body weight with associated changes in hypothalamic neuropeptides involved in growth and feeding after 24 hr. We describe the hypothalamic ventricular zone as a key site of neuroendocrine regulation, where the inflammatory signal, chemerin, links TH and RA signaling to hypothalamic remodeling.


Subject(s)
Chemokines/physiology , Energy Metabolism/physiology , Hypothalamus/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Photoperiod , Animals , Body Weight/drug effects , Chemokines/administration & dosage , Chemokines/pharmacology , Eating/drug effects , Energy Metabolism/drug effects , Ependyma/cytology , Ependyma/metabolism , Ependymoglial Cells/metabolism , Humans , Hypothalamus/cytology , Hypothalamus/drug effects , Injections, Intraventricular , Intercellular Signaling Peptides and Proteins/administration & dosage , Intercellular Signaling Peptides and Proteins/pharmacology , Male , Neuronal Plasticity/drug effects , Random Allocation , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Receptors, Chemokine/analysis , Receptors, Chemokine/drug effects , Signal Transduction/drug effects , Thyroid Hormones/physiology
6.
Brain Struct Funct ; 221(6): 3315-26, 2016 07.
Article in English | MEDLINE | ID: mdl-26374207

ABSTRACT

Retinoic acid (RA) is a potent regulator of gene transcription via its activation of a set of nuclear receptors controlling transcriptional activation. Precise maintenance of where and when RA is generated is essential and achieved by local expression of synthetic and catabolic enzymes. The catabolic enzymes Cyp26a1 and Cyp26b1 have been studied in detail in the embryo, where they limit gradients of RA that form patterns of gene expression, crucial for morphogenesis. This paracrine role of RA has been assumed to occur in most tissues and that the RA synthetic enzymes release RA at a site distant from the catabolic enzymes. In contrast to the embryonic CNS, relatively little is known about RA metabolism in the adult brain. This study investigated the distribution of Cyp26a1 and Cyp26b1 transcripts in the rat brain, identifying several novel regions of expression, including the cerebral cortex for both enzymes and striatum for Cyp26b1. In vivo use of a new and potent inhibitor of the Cyp26 enzymes, ser 2-7, demonstrated a function for endogenous Cyp26 in the brain and that hippocampal RA levels can be raised by ser 2-7, altering the effect of RA on differential patterning of cell proliferation in the hippocampal region of neurogenesis, the subgranular zone. The expression of CYP26A1 and CYP26B1 was also investigated in the adult human brain and colocalization of CYP26A1 and the RA synthetic enzyme RALDH2 indicated a different, autocrine role for RA in human hippocampal neurons. Studies with the SH-SY5Y human neuroblastoma cell line implied that the co-expression of RA synthetic and catabolic enzymes maintains retinoid homeostasis within neurons. This presents a novel view of RA in human neurons as part of an autocrine, intracellular signaling system.


Subject(s)
Autocrine Communication , Brain/enzymology , Homeostasis , Paracrine Communication , Retinoic Acid 4-Hydroxylase/metabolism , Tretinoin/metabolism , Aldehyde Dehydrogenase 1 Family , Animals , Cell Line, Tumor , Cell Proliferation , Cerebral Cortex/enzymology , Corpus Striatum/enzymology , Female , Gene Expression , Hippocampus/metabolism , Hippocampus/physiology , Humans , Male , Middle Aged , Rats , Retinal Dehydrogenase/metabolism
7.
PLoS One ; 10(10): e0140392, 2015.
Article in English | MEDLINE | ID: mdl-26447990

ABSTRACT

Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity.


Subject(s)
Anti-Obesity Agents/administration & dosage , Diet, High-Fat/adverse effects , Obesity/drug therapy , Pectins/administration & dosage , Adiposity/drug effects , Animals , Drug Evaluation, Preclinical , Energy Intake , Lipid Metabolism , Lipids/blood , Liver , Male , Obesity/blood , Obesity/etiology , Obesity/pathology , Rats, Sprague-Dawley
8.
PLoS One ; 10(3): e0119763, 2015.
Article in English | MEDLINE | ID: mdl-25789758

ABSTRACT

In this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHß or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.


Subject(s)
Energy Metabolism/physiology , Obesity/metabolism , Photoperiod , Adiposity/physiology , Animals , Body Composition/physiology , Diet, High-Fat , Humans , Hypothalamus/metabolism , Insulin-Like Growth Factor I/metabolism , Leptin/blood , Obesity/blood , Obesity/physiopathology , Rats , Receptors, Neuropeptide/blood , Receptors, Pituitary Hormone-Regulating Hormone/blood
9.
PLoS One ; 10(1): e0115438, 2015.
Article in English | MEDLINE | ID: mdl-25602757

ABSTRACT

Soluble fermentable dietary fibre elicits gut adaptations, increases satiety and potentially offers a natural sustainable means of body weight regulation. Here we aimed to quantify physiological responses to graded intakes of a specific dietary fibre (pectin) in an animal model. Four isocaloric semi-purified diets containing 0, 3.3%, 6.7% or 10% w/w apple pectin were offered ad libitum for 8 or 28 days to young adult male rats (n = 8/group). Measurements were made of voluntary food intake, body weight, initial and final body composition by magnetic resonance imaging, final gut regional weights and histology, and final plasma satiety hormone concentrations. In both 8- and 28-day cohorts, dietary pectin inclusion rate was negatively correlated with food intake, body weight gain and the change in body fat mass, with no effect on lean mass gain. In both cohorts, pectin had no effect on stomach weight but pectin inclusion rate was positively correlated with weights and lengths of small intestine and caecum, jejunum villus height and crypt depth, ileum crypt depth, and plasma total glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) concentrations, and at 8 days was correlated with weight and length of colon and with caecal mucosal depth. Therefore, the gut's morphological and endocrine adaptations were dose-dependent, occurred within 8 days and were largely sustained for 28 days during continued dietary intervention. Increasing amounts of the soluble fermentable fibre pectin in the diet proportionately decreased food intake, body weight gain and body fat content, associated with proportionately increased satiety hormones GLP-1 and PYY and intestinal hypertrophy, supporting a role for soluble dietary fibre-induced satiety in healthy body weight regulation.


Subject(s)
Adiposity/drug effects , Dietary Fiber/administration & dosage , Feeding Behavior/drug effects , Gastrointestinal Hormones/metabolism , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Pectins/administration & dosage , Animals , Body Composition , Body Weight , Gastrointestinal Hormones/blood , Male , Rats
10.
Thyroid ; 24(11): 1575-93, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25087834

ABSTRACT

BACKGROUND: The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify components in the hypothalamus that may be involved in the action of T3 on energy balance regulatory mechanisms. METHODS: Sprague Dawley rats were made hypothyroid by giving 0.025% methimazole (MMI) in their drinking water for 22 days. On day 21, half the MMI-treated rats received a saline injection, whereas the others were injected with T3. Food intake and body weight measurements were taken daily. Body composition was determined by magnetic resonance imaging, gene expression was analyzed by in situ hybridization, and T3-induced gene expression was determined by microarray analysis of MMI-treated compared to MMI-T3-injected hypothalamic RNA. RESULTS: Post mortem serum thyroid hormone levels showed that MMI treatment decreased circulating thyroid hormones and increased thyrotropin (TSH). MMI treatment decreased food intake and body weight. Body composition analysis revealed reduced lean and fat mass in thyroidectomized rats from day 14 of the experiment. MMI treatment caused a decrease in circulating triglyceride concentrations, an increase in nonesterified fatty acids, and decreased insulin levels. A glucose tolerance test showed impaired glucose clearance in the thyroidectomized animals. In the brain, in situ hybridization revealed marked changes in gene expression, including genes such as Mct8, a thyroid hormone transporter, and Agrp, a key component in energy balance regulation. Microarray analysis revealed 110 genes to be up- or downregulated with T3 treatment (± 1.3-fold change, p<0.05). Three genes chosen from the differentially expressed genes were verified by in situ hybridization to be activated by T3 in cells located at or close to the hypothalamic ventricular ependymal layer and differentially expressed in animal models of long- and short-term body weight regulation. CONCLUSION: This study identified genes regulated by T3 in the hypothalamus, a key area of the brain involved in homeostasis and neuroendocrine functions. These include genes hitherto not known to be regulated by thyroid status.


Subject(s)
Blood Glucose/metabolism , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Homeostasis/drug effects , Hypothalamus/drug effects , Hypothalamus/metabolism , Hypothyroidism/genetics , Triiodothyronine/pharmacology , Animals , Body Composition/drug effects , Body Composition/physiology , Body Weight/drug effects , Body Weight/physiology , Eating/drug effects , Eating/physiology , Energy Metabolism/physiology , Homeostasis/physiology , Hypothyroidism/chemically induced , Hypothyroidism/metabolism , Male , Methimazole , Rats , Rats, Sprague-Dawley
11.
Nutr Metab (Lond) ; 11: 36, 2014.
Article in English | MEDLINE | ID: mdl-25152765

ABSTRACT

BACKGROUND: Dietary fibre-induced satiety offers a physiological approach to body weight regulation, yet there is lack of scientific evidence. This experiment quantified food intake, body weight and body composition responses to three different soluble fermentable dietary fibres in an animal model and explored underlying mechanisms of satiety signalling and hindgut fermentation. METHODS: Young adult male rats were fed ad libitum purified control diet (CONT) containing 5% w/w cellulose (insoluble fibre), or diet containing 10% w/w cellulose (CELL), fructo-oligosaccharide (FOS), oat beta-glucan (GLUC) or apple pectin (PECT) (4 weeks; n = 10/group). Food intake, body weight, and body composition (MRI) were recorded, final blood samples analysed for gut satiety hormones, hindgut contents for fermentation products (including short-chain fatty acids, SCFA) and intestinal tissues for SCFA receptor gene expression. RESULTS: GLUC, FOS and PECT groups had, respectively, 10% (P < 0.05), 17% (P < 0.001) and 19% (P < 0.001) lower food intake and 37% (P < 0.01), 37% (P < 0.01) and 45% (P < 0.001) lower body weight gain than CONT during the four-week experiment. At the end they had 26% (P < 0.05), 35% (P < 0.01) and 42% (P < 0.001) less total body fat, respectively, while plasma total glucagon-like peptide-1 (GLP-1) was 2.2-, 3.2- and 2.6-fold higher (P < 0.001) and peptide tyrosine tyrosine (PYY) was 2.3-, 3.1- and 3.0-fold higher (P < 0.001). There were no differences in these parameters between CONT and CELL. Compared with CONT and CELL, caecal concentrations of fermentation products increased 1.4- to 2.2-fold in GLUC, FOS and PECT (P < 0.05) and colonic concentrations increased 1.9- to 2.5-fold in GLUC and FOS (P < 0.05), with no consistent changes in SCFA receptor gene expression detected. CONCLUSIONS: This provides animal model evidence that sustained intake of three different soluble dietary fibres decreases food intake, weight gain and adiposity, increases circulating satiety hormones GLP-1 and PYY, and increases hindgut fermentation. The presence of soluble fermentable fibre appears to be more important than its source. The results suggest that dietary fibre-induced satiety is worthy of further investigation towards natural body weight regulation in humans.

12.
J Neurochem ; 122(4): 789-99, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22681644

ABSTRACT

Retinoic acid (RA) has been found to regulate hypothalamic function, but precisely where it acts is unknown. This study shows expression of retinaldehyde dehydrogenase (RALDH) enzymes in tanycytes that line the third ventricle in an area overlapping with the site of hypothalamic neural stem cells. The influence of RA was examined on the proliferation of progenitors lining the third ventricle using organotypic slice cultures. As has been shown in other regions of neurogenesis, RA was found to inhibit proliferation. Investigations of the dynamics of RALDH1 expression in the rat hypothalamus have shown that this enzyme is in tanycytes under photoperiodic control with highest levels during long versus short days. In parallel to this shift in RA synthesis, cell proliferation in the third ventricle was found to be lowest during long days when RA was highest, implying that RALDH1 synthesized RA may regulate neural stem cell proliferation. A second RA synthesizing enzyme, RALDH2 was also present in tanycytes lining the third ventricle. In contrast to RALDH1, RALDH2 showed little change with photoperiodicity, but surprisingly the protein was present in the apparent absence of mRNA transcript and it is hypothesized that the endocytic tanycytes may take this enzyme up from the cerebrospinal fluid (CSF).


Subject(s)
Cell Proliferation/drug effects , Hypothalamus/cytology , Hypothalamus/enzymology , Photoperiod , Retinal Dehydrogenase/biosynthesis , Tretinoin/pharmacology , Aldehyde Dehydrogenase 1 Family , Animals , Blotting, Western , Cells, Cultured , Gene Expression Regulation, Enzymologic/drug effects , Hypothalamus/drug effects , Immunohistochemistry , In Situ Hybridization , Isoenzymes/biosynthesis , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/drug effects , Organ Culture Techniques , Polymerase Chain Reaction , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Retinal Dehydrogenase/cerebrospinal fluid , Third Ventricle/cytology , Third Ventricle/drug effects , Third Ventricle/metabolism , Tretinoin/analysis
13.
Endocrinology ; 153(2): 815-24, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22210746

ABSTRACT

In seasonal mammals, growth, energy balance, and reproductive status are regulated by the neuroendocrine effects of photoperiod. Thyroid hormone (TH) is a key player in this response in a number of species. A neuroendocrine role for the nutritional factor vitamin A has not been considered, although its metabolic product retinoic acid (RA) regulates transcription via the same nuclear receptor family as TH. We hypothesized that vitamin A/RA plays a role in the neuroendocrine hypothalamus alongside TH signaling. Using a reporter assay to measure RA activity, we demonstrate that RA activity levels in the hypothalamus of photoperiod-sensitive F344 rats are reduced in short-day relative to long-day conditions. These lower RA activity levels can be explained by reduced expression of a whole network of RA signaling genes in the ependymal cells around the third ventricle and in the arcuate nucleus of the hypothalamus. These include genes required for uptake (Ttr, Stra6, and Crbp1), synthesis (Raldh1), receptor response (RAR), and ligand clearance (Crapb1 and Cyp26B1). Using melatonin injections into long-day rats, we show that the probable trigger of the fall in RA is melatonin. Surprisingly we also found RPE65 expression in the mammalian hypothalamus for the first time. Similar to RA signaling genes, members of the Wnt/ß-catenin pathway and NMU and its receptor NMUR2 are also under photoperiodic control. Our data provide strong evidence for a novel endocrine axis, involving the nutrient vitamin A regulated by photoperiod and melatonin and suggest a role for several new players in the photoperiodic neuroendocrine response.


Subject(s)
Photoperiod , Vitamin A/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Gene Expression Regulation/physiology , Hypothalamus/physiology , Male , Melatonin/pharmacology , Neuropeptides/genetics , Neuropeptides/metabolism , Rats , Rats, Inbred F344 , Receptors, Neurotransmitter/genetics , Receptors, Neurotransmitter/metabolism , Signal Transduction/physiology , Signal Transduction/radiation effects , Wnt Proteins/genetics , beta Catenin/genetics
14.
PLoS One ; 6(6): e21351, 2011.
Article in English | MEDLINE | ID: mdl-21731713

ABSTRACT

Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD) rats to mimic short day (SD), we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHß, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis remains to be investigated.


Subject(s)
Gene Expression Regulation , Hypothalamus/metabolism , Photoperiod , Signal Transduction/genetics , Thyroid Hormones/metabolism , Animals , Feeding Behavior/drug effects , Gene Expression Regulation/drug effects , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Hypothalamus/drug effects , Melatonin/pharmacology , Oligonucleotide Array Sequence Analysis , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Rats, Inbred F344 , Signal Transduction/drug effects , Thyrotropin-Releasing Hormone/genetics , Thyrotropin-Releasing Hormone/metabolism , Weight Gain/drug effects , Weight Gain/genetics
15.
J Neurochem ; 112(1): 246-57, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19860856

ABSTRACT

Both retinoic acid (RA) and thyroid hormone (TH) regulate transcription via specific nuclear receptors. TH regulates hypothalamic homeostasis and active T3 is generated by deiodinase enzymes in tanycytes surrounding the third ventricle. However, RA has not been previously considered in such a role. Data presented here highlights novel parallels between the TH and RA synthetic pathways in the hypothalamus implying that RA also acts to regulate hypothalamic gene expression and function. Key elements of the RA cellular signaling pathway were shown to be regulated in the rodent hypothalamus. Retinoid synthetic enzymes and the retinol transport protein Stra6 were located in the cells lining the third ventricle allowing synthesis of RA from retinol present in the CNS to act via RA receptors and retinoid X receptors in the hypothalamus. Photoperiod manipulation was shown to alter the expression of synthetic enzymes and receptors with lengthening of photoperiod leading to enhanced RA signaling. In vitro RA can regulate the hypothalamic neuroendocrine peptide adrenocorticotrophic hormone. This work presents the new concept of controlled RA synthesis by hypothalamic tanycytes giving rise to possible involvement of this system in endocrine, and possibly vitamin A, homeostasis.


Subject(s)
Hypothalamus/physiology , Photoperiod , Signal Transduction/physiology , Tretinoin/physiology , Animals , Cell Line , Cell Line, Tumor , Cells, Cultured , Male , Mice , Organ Culture Techniques , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Receptors, Retinoic Acid/physiology , Thyroid Hormones/physiology , Transgenes
16.
Am J Physiol Regul Integr Comp Physiol ; 294(4): R1148-53, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18234745

ABSTRACT

Hypothalamic energy balance genes have been examined in the context of seasonal body weight regulation in the Siberian hamster. Most of these long photoperiod (LD)/short photoperiod (SD) comparisons have been of tissues collected at a single point in the light-dark cycle. We examined the diurnal expression profile of hypothalamic genes in hamsters killed at 3-h intervals throughout the light-dark cycle after housing in LD or SD for 12 wk. Gene expression of neuropeptide Y, agouti-related peptide, proopiomelanocortin, cocaine- and amphetamine-regulated transcript, long-form leptin receptor, suppressor of cytokine signaling-3, melanocortin-3 receptor, melanocortin-4 receptor, and the clock gene Per1 as control were measured by in situ hybridization in hypothalamic nuclei. Effects of photoperiod on gene expression and leptin levels were generally consistent with previous reports. A clear diurnal variation was observed for Per1 in the suprachiasmatic nucleus in both photoperiods. Temporal effects on expression of energy balance genes were restricted to long-form leptin receptor in the arcuate nucleus and ventromedial nucleus, where similar diurnal expression profiles were observed, and melanocortin-4 receptor in the paraventricular nucleus; these effects were only observed in LD hamsters. There was no variation in serum leptin concentration. The 24-h profiles of hypothalamic energy balance gene expression broadly confirm photoperiodic differences that were observed previously, based on single time point comparisons, support the growing consensus that these genes have a limited role in seasonal body weight regulation, and further suggest limited involvement in daily rhythms of food intake.


Subject(s)
Body Weight/genetics , Circadian Rhythm , Energy Metabolism/genetics , Gene Expression Regulation , Hypothalamus/metabolism , Nerve Tissue Proteins/genetics , Photoperiod , Animals , Cricetinae , Eating/genetics , Leptin/blood , Male , Nerve Tissue Proteins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phodopus , RNA, Messenger/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Seasons , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Suprachiasmatic Nucleus/metabolism
17.
Obes Facts ; 1(2): 71-9, 2008.
Article in English | MEDLINE | ID: mdl-20054165

ABSTRACT

Thyroid hormone has been known for decades as a hormone with profound effects on energy expenditure and ability to control weight. The regulation of energy expenditure by thyroid hormone primarily occurs via regulation of the activity, or expression, of uncoupling proteins in peripheral tissues. However, mechanistically this requires a signal from the brain to change circulating levels of thyroxine and thyroid hormone or increased sympathetic drive to peripheral tissues to alter local thyroid hormone levels via increased expression of type 2 deiodinase. However, little consideration has been given to the potential role and involvement of thyroid hormones action in the brain in the regulation of energy balance. Recent evidence implicates thyroid hormone as a shortterm signal of energy deficit imposed by starvation. Furthermore, thyroid hormone action within the hypothalamus is involved in adjusting long-term energy expenditure in seasonal animals which endure food shortages in winter. Evidence from several studies suggests that regulation of type 2 and type 3 deiodinase enzymes in tanycytes of the third ventricle are gatekeepers of thyroid hormone levels in the hypothalamus. This paper reviews some of the evidence for the role of deiodinase enzymes and the actions of thyroid hormone in the hypothalamus in the regulation of energy balance.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Energy Metabolism/physiology , Thyroid Gland/metabolism , Thyroid Hormones/metabolism , Adaptation, Physiological/physiology , Animals , Homeostasis/physiology , Humans
18.
Endocrinology ; 148(8): 3608-17, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17478556

ABSTRACT

Seasonal adaptations in physiology exhibited by many animals involve an interface between biological timing and specific neuroendocrine systems, but the molecular basis of this interface is unknown. In this study of Siberian hamsters, we show that the availability of thyroid hormone within the hypothalamus is a key determinant of seasonal transitions. The expression of the gene encoding type III deiodinase (Dio3) and Dio3 activity in vivo (catabolism of T(4) and T(3)) is dynamically and temporally regulated by photoperiod, consistent with the loss of hypothalamic T(3) concentrations under short photoperiods. Chronic replacement of T(3) in the hypothalamus of male hamsters exposed to short photoperiods, thus bypassing synthetic or catabolic deiodinase enzymes located in cells of the ependyma of the third ventricle, prevented the onset of short-day physiology: hamsters maintained a long-day body weight phenotype and failed to undergo testicular and epididymal regression. However, pelage moult to a winter coat was not affected. Type II deiodinase gene expression was not regulated by photoperiod in these hamsters. Collectively, these data point to a pivotal role for hypothalamic DIO3 and T(3) catabolism in seasonal cycles of body weight and reproduction in mammals.


Subject(s)
Body Weight/physiology , Hypothalamus/physiology , Reproduction/physiology , Seasons , Thyroxine/metabolism , Triiodothyronine/metabolism , Adaptation, Physiological/physiology , Animals , Circadian Rhythm/physiology , Cricetinae , Eating/physiology , Energy Metabolism/physiology , Gene Expression/physiology , Hair/physiology , Hypothalamus/enzymology , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Male , Metabolism , Phenotype , Phodopus , Photoperiod , Iodothyronine Deiodinase Type II
19.
J Endocrinol ; 191(3): 687-98, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17170225

ABSTRACT

Tanycytes in the ependymal layer of the third ventricle act both as a barrier and a communication gateway between the cerebrospinal fluid, brain and portal blood supply to the pituitary gland. However, the range, importance and mechanisms involved in the function of tanycytes remain to be explored. In this study, we have utilized a photoperiodic animal to examine the expression of three unrelated gene sequences in relation to photoperiod-induced changes in seasonal physiology and behaviour. We demonstrate that cellular retinol binding protein [corrected] (CRBP1), a retinoic acid transport protein, GPR50, an orphan G-protein-coupled receptor and nestin, an intermediate filament protein, are down-regulated in short-day photoperiods. The distribution of the three sequences is very similar, with expression located in cells with tanycyte morphology in the region of the ependymal layer where tanycytes are located. Furthermore, CRBP1 expression in the ependymal layer is shown to be independent of a circadian clock and altered testosterone levels associated with testicular regression in short photo-period. Pinealectomy of Siberian hamsters demonstrates CRBP1 expression is likely to be dependent on melatonin output from the pineal gland. This provides evidence that tanycytes are seasonally responsive cells and are likely to be an important part of the mechanism to facilitate seasonal physiology and behaviour in the Siberian hamster.


Subject(s)
Ependyma/metabolism , Intermediate Filament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phodopus/physiology , Photoperiod , Receptors, G-Protein-Coupled/metabolism , Receptors, Retinoic Acid/metabolism , Animals , Biomarkers/analysis , Blood-Brain Barrier , Cricetinae , Ependyma/cytology , Gene Expression Regulation , In Situ Hybridization/methods , Male , Mice , Mice, Knockout , Nestin , Phodopus/anatomy & histology , Pineal Gland/physiology , Pineal Gland/surgery , Receptors, G-Protein-Coupled/analysis , Stem Cells/cytology , Third Ventricle
20.
Prog Brain Res ; 153: 325-37, 2006.
Article in English | MEDLINE | ID: mdl-16876584

ABSTRACT

Weight loss in humans requires, except during an illness, some form of imposed restriction on food intake or increase in energy expenditure. This necessitates overcoming powerful peripheral and central signals that serve to protect against negative energy balance. The identification of the systems and pathways involved has come from mouse models with genetic and targeted mutations, e.g., ob/ob and MC4 R(-/-) as well as rat models of obesity. Study of seasonal animals has shown that they undergo annual cycles of body fattening and adipose tissue loss as important adaptations to environmental change, yet these changes appear to involve mechanisms distinct from those known already. One animal model, the Siberian hamster, exhibits marked, but reversible, weight loss in response to shortening day length. The body weight is driven by a decrease in food intake with the magnitude of the loss of body weight being directly related to the length of time of exposure to short photoperiod. The most important facet of this response is that the point of energy balance is continuously re-adjusted during the transition in body weight reflecting an apparent 'sliding set point'. Studies have focused on identifying the neural basis of this mechanism. Initial studies of known genes (e.g., NPY, POMC, and AgRP) both through the measurement of gene expression in the arcuate nucleus as well as following intracerebroventricular (i.c.v.) injection indicated that the systems involved are not those involved in restoring energy balance following energy deficits. Instead, a novel mechanism of regulation is implied. Recent studies have begun to explore the neural basis of the seasonal body weight response. A discrete and novel region of the posterior arcuate nucleus, the dorsal medial posterior arcuate nucleus (dmpARC) has been identified, where a battery of gene expression changes for signalling molecules (vgf and histamine H3 receptor) and transcription factors (RXRgamma and RAR) occur in association with seasonal changes in body weight. This work provides the basis of a potentially novel mechanism of energy balance regulation.


Subject(s)
Body Weight/physiology , Energy Metabolism/physiology , Photoperiod , Seasons , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/physiology , Gene Expression Regulation/physiology , Leptin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...