Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
World J Biol Chem ; 7(1): 168-77, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26981205

ABSTRACT

AIM: To investigate the influence of ischemia/reperfusion on arctic ground squirrel (AGS) neuronal progenitor cells (NPCs), we subjected these cultured cells to oxygen and glucose deprivation. METHODS: AGS NPCs were expanded and differentiated into NPCs and as an ischemia vulnerable control, commercially available human NPCs (hNPCs) were seeded from thawed NPCs. NPCs, identified by expression of TUJ1 were seen at 14-21 d in vitro (DIV). Cultures were exposed to control conditions, hypoxia, oxygen and glucose deprivation or glucose deprivation alone or following return to normal conditions to model reperfusion. Cell viability and death were assessed from loss of ATP as well as from measures of alamarBlue(®) and lactate dehydrogenase in the media and from counts of TUJ1 positive cells using immunocytochemistry. Dividing cells were identified by expression of Ki67 and phenotyped by double labeling with GFAP, MAP2ab or TUJ1. RESULTS: We report that when cultured in NeuraLife™, AGS cells remain viable out to 21 DIV, continue to express TUJ1 and begin to express MAP2ab. Viability of hNPCs assessed by fluorescence alamarBlue (arbitrary units) depends on both glucose and oxygen availability [viability of hNPCs after 24 h oxygen glucose deprivation (OGD) with return of oxygen and glucose decreased from 48151 ± 4551 in control cultures to 43481 ± 2413 after OGD, P < 0.05]. By contrast, when AGS NPCs are exposed to the same OGD with reperfusion at 14 DIV, cell viability assessed by alamarBlue increased from 165305 ± 11719 in control cultures to 196054 ± 13977 after OGD. Likewise AGS NPCs recovered ATP (92766 ± 6089 in control and 92907 ± 4290 after modeled reperfusion; arbitrary luminescence units), and doubled in the ratio of TUJ1 expressing neurons to total dividing cells (0.11 ± 0.04 in control cultures vs 0.22 ± 0.2 after modeled reperfusion, P < 0.05). Maintaining AGS NPCs for a longer time in culture lowered resistance to injury, however, did not impair proliferation of NPCs relative to other cell lineages after oxygen deprivation followed by re-oxygenation. CONCLUSION: Ischemic-like insults decrease viability and increase cell death in cultures of human NPCs. Similar conditions have less affect on cell death and promote proliferation in AGS NPCs.

2.
J Cereb Blood Flow Metab ; 28(7): 1307-19, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18398417

ABSTRACT

Oxygen-glucose deprivation (OGD) initiates a cascade of intracellular responses that culminates in cell death in sensitive species. Neurons from Arctic ground squirrels (AGS), a hibernating species, tolerate OGD in vitro and global ischemia in vivo independent of temperature or torpor. Regulation of energy stores and activation of mitogen-activated protein kinase (MAPK) signaling pathways can regulate neuronal survival. We used acute hippocampal slices to investigate the role of ATP stores and extracellular signal-regulated kinase (ERK)1/2 and Jun NH(2)-terminal kinase (JNK) MAPKs in promoting survival. Acute hippocampal slices from AGS tolerated 30 mins of OGD and showed a small but significant increase in cell death with 2 h OGD at 37 degrees C. This tolerance is independent of hibernation state or season. Neurons from AGS survive OGD despite rapid ATP depletion by 3 mins in interbout euthermic AGS and 10 mins in hibernating AGS. Oxygen-glucose deprivation does not induce JNK activation in AGS and baseline ERK1/2 and JNK activation is maintained even after drastic depletion of ATP. Surprisingly, inhibition of ERK1/2 or JNK during OGD had no effect on survival, whereas inhibition of JNK increased cell death during normoxia. Thus, protective mechanisms promoting tolerance to OGD by AGS are downstream from ATP loss and are independent of hibernation state or season. Journal of Cerebral Blood Flow & Metabolism (2008) 28, 1307-1319; doi:10.1038/jcbfm.2008.20; published online 9 April 2008.


Subject(s)
Adenosine Triphosphate/physiology , Glucose/metabolism , Hippocampus/cytology , JNK Mitogen-Activated Protein Kinases/physiology , Mitogen-Activated Protein Kinase 3/physiology , Neurons/metabolism , Oxygen/metabolism , Adaptation, Physiological , Animals , Cell Survival , Hibernation , Neurons/cytology , Neurons/enzymology , Sciuridae/physiology
3.
Mini Rev Med Chem ; 6(8): 875-84, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16918494

ABSTRACT

Hibernation is a unique phenotype displayed by a phylogenetically diverse group of organisms including several species of mammals and one species of primate. Here we review evidence for blood and tissue borne signaling molecules in hibernating animals, achievements in isolating and characterizing these molecules, and potential medicinal applications.


Subject(s)
Hibernation/physiology , Mammals/physiology , Neuroprotective Agents/analysis , Plasma/chemistry , Adaptation, Physiological , Animals , Mammals/classification , Nerve Growth Factors/analysis , Nerve Growth Factors/pharmacology , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/pharmacology , Neuroprotective Agents/pharmacology
4.
J Neurosci Res ; 84(2): 291-8, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16676330

ABSTRACT

Heterothermic mammals such as ground squirrels tolerate ischemia and N-methyl-D-aspartate (NMDA) better than homeothermic mammals such as rats both in vivo and in vitro, and this tolerance is enhanced in the hibernating state. However, the cellular mechanisms underlying this tolerance remain unclear. NMDA receptors (NMDAR) play a key role in excitotoxicity. The purpose of the current study was therefore to test the hypothesis that NMDAR are down-regulated in hibernating Arctic ground squirrels (hAGS; Spermophilus parryii). To address this hypothesis, we used Western blot analysis to investigate NMDAR phosphorylation, an activator of NMDAR function, and internalization in naïve hippocampal tissue from hAGS, interbout euthermic AGS (ibeAGS), and rats. Furthermore, we used fura-2 calcium imaging to examine NMDAR function in cultured hippocampal slices from hAGS, ibeAGS, and rats. We report that phosphorylation of the NMDAR1 (NR1) subunit is decreased in hippocampal tissue from hAGS and that the NMDAR component of Glu-induced increase in [Ca(2+)](i) is decreased in hippocampal slices from hAGS. Moreover, the fraction of NR1 in the functional membrane pool in AGS is less than that in rats.


Subject(s)
Hibernation/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Sciuridae/physiology , Animals , Blotting, Western , Brain Chemistry , Calcium/metabolism , Down-Regulation , Glutamic Acid/metabolism , Hippocampus , Imaging, Three-Dimensional , Organ Culture Techniques , Phosphorylation , Rats
5.
J Cereb Blood Flow Metab ; 26(9): 1148-56, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16395285

ABSTRACT

Hibernating Arctic ground squirrel (hAGS), Spermophilus parryii, survive profound decreases in cerebral perfusion during torpor and return to normal blood flow during intermittent rewarming periods without neurologic damage. Hibernating AGS tolerate traumatic brain injury in vivo, and acute hippocampal slices from hibernating animals tolerate oxygen and glucose deprivation. It remains unclear, however, if neuroprotection results from intrinsic tissue properties or from differences in response to acute trauma associated with slice preparation. The goal of this work was therefore to determine whether an intrinsic tissue tolerance persists in chronic culture of AGS hippocampal slices at 37 degrees C. A second goal was to address N-methyl-D-aspartate (NMDA) receptor involvement and channel arrest as potential mechanisms of intrinsic tissue tolerance. Baseline neuronal survival and tolerance to oxygen and nutrient deprivation (OND), an in vitro model of ischemia-reperfusion, were assessed in the CA1 region of hippocampal slices from juvenile, hAGS and interbout euthermic AGS (ibeAGS). Early in culture (insult onset at 3 h), slices from both hAGS and ibeAGS tolerate OND (4 h deprivation followed by 20 h recovery) and 500 micromol/L NMDA plus 20 mmol/L KCl. Later in culture (insult onset at 24 h), tolerance persists in slices from hAGS but not in slices from ibeAGS. Ouabain (Na(+)K(+)ATPase inhibitor) administered 24 h in culture enhances survival of slices from hAGS (assessed 24 h later). Thus, tolerance to OND in slices from hAGS is due to intrinsic tissue properties likely involving NMDA receptors and ion channel arrest.


Subject(s)
Excitatory Amino Acid Agonists/pharmacology , Food Deprivation/physiology , Hibernation/physiology , Hippocampus/physiology , Hypoxia, Brain/physiopathology , N-Methylaspartate/pharmacology , Sciuridae/physiology , Animals , Cell Count , Cell Death/physiology , Cell Survival/physiology , Female , Ion Channels/physiology , Neurons/physiology , Organ Culture Techniques , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/physiology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
6.
J Neurosci Res ; 80(6): 862-8, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15884016

ABSTRACT

Hibernating animals are very tolerant of trauma to the central nervous system such that dramatic fluctuations in cerebral blood flow occur during hibernation and arousal without apparent damage. Indeed, it was demonstrated that Arctic ground squirrels (AGS) experience acute and severe systemic hypoxia along with the dramatic fluctuation in cerebral blood flow when the animals are aroused from hibernation. While initial hypotheses concerned protective mechanisms in the hibernating state, recent evidence of sustained elevation of HIF1alpha in euthermic AGS from our laboratory suggests that a preparatory program of protective gene expression is chronically expressed in euthermic AGS. In this study we evaluated potential neuroprotective adaptations by examining the alteration of intracellular MAPK pathways that may be modulated by hypoperfusion/reperfusion in AGS during hibernation and arousal. We found that ERK and JNK are activated in both euthermic and aroused AGS compared to the hibernating group which positively correlated with HIF1alpha levels. The activation of ERK and JNK associated with HIF1alpha may play an important role in mediating neuroprotective adaptations that is essential for successful hibernation. Interestingly, p38 is activated in euthermic AGS but not in aroused AGS, which shows strong correlation with iNOS induction. Therefore, the attenuation of p38 activation and iNOS induction in hibernating and aroused animals may contribute to the attenuation of inflammation that plays important neuroprotective roles during hibernation. Taken together, the differential modulation of the MAPK pathways may be critical for neuroprotection of AGS necessary for fluctuations in oxygen and nutrient delivery during hibernation.


Subject(s)
Brain/physiology , Hibernation/physiology , Mitogen-Activated Protein Kinases/metabolism , Sciuridae/physiology , Transcription Factors/metabolism , Adaptation, Physiological/physiology , Animals , Arousal/physiology , Enzyme Activation/physiology , Female , Gene Expression , Gene Expression Regulation , Hypoxia/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit , Immunoblotting , Male , Neuroprotective Agents
7.
Free Radic Biol Med ; 37(4): 511-20, 2004 Aug 15.
Article in English | MEDLINE | ID: mdl-15256222

ABSTRACT

Distribution of ascorbate into tissues is an essential process in ascorbate antioxidant defense. Hibernating animals are studied as a model of tolerance to ischemia-reperfusion because of their tolerance to fluctuations in blood flow associated with prolonged torpor and periodic arousal episodes. Throughout hibernation, plasma ascorbate concentration ([Asc](p)) repetitively increases during torpor, then falls during periodic arousal bouts. We previously proposed that high [Asc](p) provides a ready source of antioxidant protection for distribution to the central nervous system and peripheral tissues during arousal. Here we tested whether deliberate oxidation of plasma ascorbate by intravenous administration of ascorbate oxidase (AO), prior to arousal, compromised tissue levels of ascorbate or the other water-soluble antioxidants, glutathione (GSH) and urate. Although AO decreased [Asc](p) to below the level of detection during torpor and after arousal, ascorbate oxidation did not decrease post-arousal tissue levels of reduced ascorbate, glutathione, or urate in any tissue examined, except liver. The data imply that ascorbate is taken up equally well into brain and other tissues as either ascorbate or its oxidized product dehydroascorbate, with subsequent intracellular reduction of dehydroascorbate. Lack of effect of ascorbate oxidation on tissue levels of GSH or urate indicates that dehydroascorbate uptake and reduction do not compromise tissue concentrations of these other water-soluble antioxidants. Thus, we show equal availability of reduced and oxidized plasma ascorbate during metabolically demanding thermogenesis and reperfusion associated with arousal from hibernation.


Subject(s)
Ascorbic Acid/metabolism , Hibernation , Oxidation-Reduction , Animals , Antioxidants/metabolism , Ascorbate Oxidase/metabolism , Brain/metabolism , Chromatography, High Pressure Liquid , Dehydroascorbic Acid/metabolism , Free Radicals , Glutathione/metabolism , Oxygen/metabolism , Reperfusion Injury , Sciuridae , Temperature , Time Factors , Tissue Distribution , Uric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...