Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Brain Res ; 1766: 147518, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33991492

ABSTRACT

Although there is strong evidence for cholinergic projections to the rat inferior colliculus, especially from the pedunculopontine tegmental nucleus (Noftz et al., 2020), there is a lack of information about the quantitative prevalence of the enzymes of acetylcholine metabolism in its various portions. We have used microdissection of freeze-dried sections combined with radiometric assays to map the distributions in the rat inferior colliculus of the activities of choline acetyltransferase (ChAT), which catalyzes synthesis of acetylcholine, and acetylcholinesterase (AChE), which catalyzes its breakdown by hydrolysis. Both enzyme activities were present throughout the inferior colliculus. Average ChAT activity was consistently somewhat higher in the external cortex, excluding its most superficial layer, than in the dorsal cortex or central nucleus. Within the external cortex, ChAT activity was about half as high laterally in its most superficial layer as elsewhere. The distribution of AChE activity was more uniform than that of ChAT. Overall, ChAT activity in the rat inferior colliculus was relatively low, about a fifth of that in whole brain of rat and lower than in other central auditory regions, whereas AChE activity was about two-thirds that of rat whole brain and about average for central auditory regions. The results are compared to previous measurements for cat and hamster inferior colliculus. They are consistent with a modest role for cholinergic neurotransmission in the inferior colliculus, to modulate the activity of its major neuronal types.


Subject(s)
Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Brain Mapping/methods , Choline O-Acetyltransferase/metabolism , Inferior Colliculi/enzymology , Animals , Cats , Cricetinae , Enzyme Activation/physiology , Rats
2.
Article in English | MEDLINE | ID: mdl-33733053

ABSTRACT

Kainic acid injections have been used to destroy neuron somata in particular regions without damaging fiber tracts. We injected a solution of kainic acid into the region of the rat superior olivary complex in an effort to destroy its cholinergic projections to the cochlea and cochlear nucleus, which derive especially from the lateral superior olivary nucleus and ventral nucleus of the trapezoid body. In the lateral superior olivary nucleus, there were relatively small but fairly consistent decreases of choline acetyltransferase (ChAT) activity, larger decreases of acetylcholinesterase (AChE) activity, and consistent decreases of malate dehydrogenase activity, as a marker for oxidative metabolism. Other superior olivary regions were less affected by the kainic acid injections, but most showed overall significant decreases of AChE activity. Our results suggest that the cholinergic neurons giving rise to the centrifugal pathways to the cochlea and cochlear nucleus are more resistant to the effects of kainic acid than are those that receive major ascending input from the cochlear nucleus and project to higher levels of the auditory system. Comparison with published anatomical studies suggests that this resistance to the effects of kainic acid is related to relatively little glutamatergic input to the somata and proximal dendrites of these neurons. We also found a consistent approximately 16 % decrease of ChAT activity in the injected-side facial nerve root, which is most easily explained as a small effect of kainic acid on the facial nerve fibers passing through the injection site.

3.
Hear Res ; 370: 264-271, 2018 12.
Article in English | MEDLINE | ID: mdl-30177425

ABSTRACT

There is evidence for a function of acetylcholine in the cochlear nucleus, primarily in a feedback, modulatory effect on auditory processing. Using a microdissection and quantitative microassay approach, choline acetyltransferase activity was mapped in the trapezoid bodies of rats, in which the activity is relatively higher than in cats or hamsters. Maps of series of sections through the trapezoid body demonstrated generally higher choline acetyltransferase activity rostrally than caudally, particularly in its portion ventral to the medial part of the spinal trigeminal tract. In the lateral part of the trapezoid body, near the cochlear nucleus, activities tended to be higher in more superficial portions than in deeper portions. Calculation of choline acetyltransferase activity in the total trapezoid body cross-section of a rat with a comprehensive trapezoid body map gave a value 3-4 times that estimated for the centrifugal labyrinthine bundle, which is mostly composed of the olivocochlear bundle, in the same rat. Comparisons with other rats suggest that the ratio may not usually be this high, but it is still consistent with our previous results suggesting that the centrifugal cholinergic innervation of the rat cochlear nucleus reaching it via a trapezoid body route is much higher than that reaching it via branches from the olivocochlear bundle. The higher choline acetyltransferase activity rostrally than caudally in the trapezoid body is consistent with evidence that the centrifugal cholinergic innervation of the cochlear nucleus derives predominantly from locations at or rostral to its anterior part, in the superior olivary complex and pontomesencephalic tegmentum.


Subject(s)
Auditory Pathways/enzymology , Choline O-Acetyltransferase/metabolism , Cochlea/innervation , Hearing , Trapezoid Body/enzymology , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Animals , Cochlear Nucleus/metabolism , GPI-Linked Proteins/metabolism , Male , Rats, Inbred BN , Rats, Inbred F344 , Rats, Long-Evans
4.
Hear Res ; 356: 16-24, 2017 12.
Article in English | MEDLINE | ID: mdl-29056431

ABSTRACT

Although it is well established that the choline acetyltransferase (ChAT, the enzyme for acetylcholine synthesis) in the mammalian cochlea is associated with its olivocochlear innervation, the distribution of this innervation in the cochlea varies somewhat among mammalian species. The quantitative distribution of ChAT activity in the cochlea has been reported for guinea pigs and rats. The present study reports the distribution of ChAT activity within the organ of Corti among the three turns of the cat cochlea and the effects of removing olivocochlear innervation either by a lateral cut aimed to totally transect the left olivocochlear bundle or a more medial cut additionally damaging the superior olivary complex on the same side. Similarly to results for guinea pig and rat, the distribution of ChAT activity in the cat outer hair cell region showed a decrease from base to apex, but, unlike in the guinea pig and rat, the cat inner hair cell region did not. As in the rat, little ChAT activity was measured in the outer supporting cell region. As previously reported for whole cat cochlea and for rat cochlear regions, transection of the olivocochlear bundle resulted in almost total loss of ChAT activity in the hair cell regions of the cat cochlea. Lesions of the superior olivary complex resulted in loss of ChAT activity in the inner hair cell region of all cochlear turns only on the lesion side but bilateral losses in the outer hair cell region of all turns. The results are consistent with previous evidence that virtually all cholinergic synapses in the mammalian cochlea are associated with its olivocochlear innervation, that the olivocochlear innervation to the inner hair cell region is predominantly ipsilateral, and that the olivocochlear innervation to the outer hair cells is bilateral.


Subject(s)
Cochlea/surgery , Olivary Nucleus/surgery , Superior Olivary Complex/surgery , Acetylcholine/metabolism , Animals , Auditory Pathways/enzymology , Auditory Pathways/surgery , Cats , Choline O-Acetyltransferase , Cochlea/enzymology , Cochlea/innervation , Female , Hair Cells, Auditory, Inner/enzymology , Hair Cells, Auditory, Outer/enzymology , Labyrinth Supporting Cells/enzymology , Male , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...