Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Microorganisms ; 12(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38792682

ABSTRACT

Emerging data support associations between the depletion of the healthy gut microbiome and aging-related physiological decline and disease. In humans, fecal microbiota transplantation (FMT) has been used successfully to restore gut microbiome structure and function and to treat C. difficile infections, but its application to healthy aging has been scarcely investigated. The marmoset is an excellent model for evaluating microbiome-mediated changes with age and interventional treatments due to their relatively shorter lifespan and many social, behavioral, and physiological functions that mimic human aging. Prior work indicates that FMT is safe in marmosets and may successfully mediate gut microbiome function and host health. This narrative review (1) provides an overview of the rationale for FMT to support healthy aging using the marmoset as a translational geroscience model, (2) summarizes the prior use of FMT in marmosets, (3) outlines a protocol synthesized from prior literature for studying FMT in aging marmosets, and (4) describes limitations, knowledge gaps, and future research needs in this field.

2.
Am J Primatol ; 86(7): e23630, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655843

ABSTRACT

The marmoset is a fundamental nonhuman primate model for the study of aging, neurobiology, and many other topics. Genetic management of captive marmoset colonies is complicated by frequent chimerism in the blood and other tissues, a lack of tools to enable cost-effective, genome-wide interrogation of variation, and historic mergers and migrations of animals between colonies. We implemented genotype-by-sequencing (GBS) of hair follicle derived DNA (a minimally chimeric DNA source) of 82 marmosets housed at the Southwest National Primate Research Center (SNPRC). Our primary goals were the genetic characterization of our marmoset population for pedigree verification and colony management and to inform the scientific community of the functional genetic makeup of this valuable resource. We used the GBS data to reconstruct the genetic legacy of recent mergers between colonies, to identify genetically related animals whose relationships were previously unknown due to incomplete pedigree information, and to show that animals in the SNPRC colony appear to exhibit low levels of inbreeding. Of the >99,000 single-nucleotide variants (SNVs) that we characterized, >9800 are located within gene regions known to harbor pathogenic variants of clinical significance in humans. Overall, we show the combination of low-resolution (sparse) genotyping using hair follicle DNA is a powerful strategy for the genetic management of captive marmoset colonies and for identifying potential SNVs for the development of biomedical research models.


Subject(s)
Callithrix , Genotype , Pedigree , Animals , Callithrix/genetics , Male , Female , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Inbreeding , Hair Follicle , Genotyping Techniques/methods , Genotyping Techniques/veterinary
3.
NPJ Vaccines ; 9(1): 35, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368443

ABSTRACT

Zika virus (ZIKV) infection during pregnancy poses significant threats to maternal and fetal health, leading to intrauterine fetal demise and severe developmental malformations that constitute congenital Zika syndrome (CZS). As such, the development of a safe and effective ZIKV vaccine is a critical public health priority. However, the safety and efficacy of such a vaccine during pregnancy remain uncertain. Historically, the conduct of clinical trials in pregnant women has been challenging. Therefore, clinically relevant animal pregnancy models are in high demand for testing vaccine efficacy. We previously reported that a marmoset pregnancy model of ZIKV infection consistently demonstrated vertical transmission from mother to fetus during pregnancy. Using this marmoset model, we also showed that vertical transmission could be prevented by pre-pregnancy vaccination with Zika purified inactivated virus (ZPIV) vaccine. Here, we further examined the efficacy of ZPIV vaccination during pregnancy. Vaccination during pregnancy elicited virus neutralizing antibody responses that were comparable to those elicited by pre-pregnancy vaccination. Vaccination also reduced placental pathology, viral burden and vertical transmission of ZIKV during pregnancy, without causing adverse effects. These results provide key insights into the safety and efficacy of ZPIV vaccination during pregnancy and demonstrate positive effects of vaccination on the reduction of ZIKV infection, an important advance in preparedness for future ZIKV outbreaks.

4.
Neurosci Lett ; 819: 137569, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38000775

ABSTRACT

The common marmoset (Callithrix jacchus), a small South American monkey, is an important nonhuman primate model in the study of aging and age-related neurodegenerative disease, including Alzheimer's disease, Parkinson's disease, and related dementias. Thorough characterization of the wild type marmoset brain agingmodel, including biomarkers of aging and neural degeneration, will further the marmoset's utility in translational research. We measured serum concentration of four key biomarkers of neural degeneration [total tau (T-tau), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and ubiquitin C-terminal hydrolase-L1 (UCH-L1)] via single molecule array from 24 marmosets (female n = 13, male n = 11) ranging in age from 1.3 to 18.7 years. Aged marmosets (>7 years) had significantly higher GFAP, NfL, UCH-L1, and T-tau than adult marmosets. Sex differences were not detected for any of these biomarker concentrations. These data provide an important initial range of reference values for GFAP, NfL, T-tau, and UCH-L1 to evaluate aging and neural health in marmosets, as well as evaluation of therapeutics in clinical models of disease.


Subject(s)
Callithrix , Neurodegenerative Diseases , Animals , Male , Female , Biomarkers , Brain , Aging , Glial Fibrillary Acidic Protein , Ubiquitin Thiolesterase
5.
Am J Primatol ; 86(4): e23589, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38143428

ABSTRACT

Researchers and veterinarians often use hematology and clinical chemistry to evaluate animal health. These biomarkers are relatively easy to obtain, and understanding how they change across healthy aging is critical to clinical care and diagnostics for these animals. We aimed to evaluate how clinical biomarkers from a chemistry profile and complete blood count (CBC) change with age in common marmosets (Callithrix jacchus). We assessed blood samples collected during routine physical exams at the Southwest National Primate Research Center and the University of Texas Health San Antonio marmoset colonies from November 2020-November 2021. We found that chemistry and CBC profiles varied based on facility, sex, and age. Significant changes in albumin, phosphorus/creatinine ratio, albumin/globulin ratio, amylase, creatinine, lymphocyte percent, hematocrit, granulocytes percent, lymphocytes, hemoglobin, red cell distribution width, and platelet distribution width were all reported with advancing age. Aged individuals also demonstrated evidence for changes in liver, kidney, and immune system function compared with younger individuals. Our results suggest there may be regular changes associated with healthy aging in marmosets that are outside of the range typically considered as normal values for healthy young individuals, indicating the potential need for redefined healthy ranges for clinical biomarkers in aged animals. Identifying animals that exhibit values outside of this defined healthy aging reference will allow more accurate diagnostics and treatments for aging colonies.


Subject(s)
Callithrix , Hematology , Animals , Creatinine , Callitrichinae , Albumins , Biomarkers
6.
Genes (Basel) ; 14(12)2023 12 07.
Article in English | MEDLINE | ID: mdl-38137007

ABSTRACT

The common marmoset (Callithrix jacchus) is one of the most widely used nonhuman primate models of human disease. Owing to limitations in sequencing technology, early genome assemblies of this species using short-read sequencing suffered from gaps. In addition, the genetic diversity of the species has not yet been adequately explored. Using long-read genome sequencing and expert annotation, we generated a high-quality genome resource creating a 2.898 Gb marmoset genome in which most of the euchromatin portion is assembled contiguously (contig N50 = 25.23 Mbp, scaffold N50 = 98.2 Mbp). We then performed whole genome sequencing on 84 marmosets sampling the genetic diversity from several marmoset research centers. We identified a total of 19.1 million single nucleotide variants (SNVs), of which 11.9 million can be reliably mapped to orthologous locations in the human genome. We also observed 2.8 million small insertion/deletion variants. This dataset includes an average of 5.4 million SNVs per marmoset individual and a total of 74,088 missense variants in protein-coding genes. Of the 4956 variants orthologous to human ClinVar SNVs (present in the same annotated gene and with the same functional consequence in marmoset and human), 27 have a clinical significance of pathogenic and/or likely pathogenic. This important marmoset genomic resource will help guide genetic analyses of natural variation, the discovery of spontaneous functional variation relevant to human disease models, and the development of genetically engineered marmoset disease models.


Subject(s)
Callithrix , Genomics , Animals , Humans , Callithrix/genetics , Chromosome Mapping , Genome, Human
7.
Vet Sci ; 10(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36851420

ABSTRACT

Marmosets' small body size makes anesthesia challenging. Ideally, small volumes of drugs should be administered intramuscularly (i.m.). In addition, dose-dependent sedation and anesthesia are desirable properties for sedatives and anesthetics in marmosets. Telazol® (tiletamine and zolazepam) is highly concentrated, allowing the use of small injection volumes and dose-dependent sedation and anesthesia. A randomized, blinded study with crossover design in ten healthy adult common marmosets (Callithrix jacchus) was performed to evaluate the anesthetic and cardiorespiratory effects of three doses of i.m. Telazol® (respectively, 5, 10, and 15 mg/kg). Depth of anesthesia, cardiorespiratory effects, and induction, immobilization, and recovery times were determined. A significant difference was observed in immobilization time between 5 and 15 mg/kg of Telazol®. In addition, 15 mg/kg of Telazol® resulted in increased recovery times compared to 5 mg/kg. The cardiorespiratory effects during the first 45 min of immobilization were within clinically acceptable limits. The pedal withdrawal reflex was the best indicator of the anesthetic depth.

8.
Elife ; 122023 01 31.
Article in English | MEDLINE | ID: mdl-36719274

ABSTRACT

Reconstitution of germ cell fate from pluripotent stem cells provides an opportunity to understand the molecular underpinnings of germ cell development. Here, we established robust methods for induced pluripotent stem cell (iPSC) culture in the common marmoset (Callithrix jacchus [cj]), allowing stable propagation in an undifferentiated state. Notably, iPSCs cultured on a feeder layer in the presence of a WNT signaling inhibitor upregulated genes related to ubiquitin-dependent protein catabolic processes and enter a permissive state that enables differentiation into primordial germ cell-like cells (PGCLCs) bearing immunophenotypic and transcriptomic similarities to pre-migratory cjPGCs in vivo. Induction of cjPGCLCs is accompanied by transient upregulation of mesodermal genes, culminating in the establishment of a primate-specific germline transcriptional network. Moreover, cjPGCLCs can be expanded in monolayer while retaining the germline state. Upon co-culture with mouse testicular somatic cells, these cells acquire an early prospermatogonia-like phenotype. Our findings provide a framework for understanding and reconstituting marmoset germ cell development in vitro, thus providing a comparative tool and foundation for a preclinical modeling of human in vitro gametogenesis.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Animals , Mice , Humans , Induced Pluripotent Stem Cells/metabolism , Callithrix , Cell Differentiation , Pluripotent Stem Cells/metabolism , Germ Cells/metabolism
9.
Gen Comp Endocrinol ; 333: 114195, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36563863

ABSTRACT

The luteal-placental shift is an important milestone of mammalian pregnancy signifying when endocrine control of pregnancy shifts from the corpus luteum of the ovary to the placenta. The corpus luteum is maintained by chorionic gonadotropin (CG). Upon sufficient placental maturation, CG production wanes, the corpus luteum involutes, and control is shifted to the placenta, one consequence of which is a midgestational rise in glucocorticoid production, especially cortisol and cortisone, by both mother and fetus. Glucocorticoids are involved in initiating parturition, prenatal programming of offspring phenotype, and maturing fetal organs. Limited evidence from human pregnancy suggests that the timing of this shift is delayed in twin pregnancies, but little is known about the timing of the luteal-placental shift in litter-bearing monkeys from the primate family Callitrichidae. Here we provide evidence from cotton-top tamarins (Saguinus oedipus) and common marmosets (Callithrix jacchus) of longer duration of elevated CG associated with multiple infant births compared to single births. Urinary profiles from cotton-top tamarins demonstrate that the decline of the extended elevation of CG precedes the onset of the midpregnancy sustained rise in glucocorticoids; this shift occurs later with an increase from one to two fetuses carried to term. In the common marmoset, the onset of the sustained rise of glucocorticoids in maternal urine is also delayed with an increase in infant number. Total urinary glucocorticoid levels during the last half of gestation increase monthly but do not differ by infant number. The significant delay in the luteal-placental shift suggests a longer period of placental maturation is needed to support a greater number of fetuses.


Subject(s)
Callithrix , Saguinus , Animals , Female , Humans , Pregnancy , Chorionic Gonadotropin , Corpus Luteum , Fetus , Glucocorticoids , Parity , Placenta
11.
J Med Primatol ; 51(6): 407-410, 2022 12.
Article in English | MEDLINE | ID: mdl-35791288

ABSTRACT

We conducted a dose-response study of dexamethasone to investigate an optimal dexamethasone suppression test for common marmosets. Twelve marmosets received 0.1, 0.5, or 1.0 mg/kg dexamethasone. Doses of 0.5 and 1.0 mg/kg both suppressed endogenous cortisol for at least 18 h with greater individual variability in the lower 0.5 mg/kg dose.


Subject(s)
Callithrix , Hydrocortisone , Animals , Callithrix/physiology , Dexamethasone/pharmacology
12.
Front Aging ; 3: 818700, 2022.
Article in English | MEDLINE | ID: mdl-35821836

ABSTRACT

Respiratory infections are one of the top causes of death in the elderly population, displaying susceptibility factors with increasing age that are potentially amenable to interventions. We posit that with increasing age there are predictable tissue-specific changes that prevent the immune system from working effectively in the lung. This mini-review highlights recent evidence for altered local tissue environment factors as we age focusing on increased tissue oxidative stress with associated immune cell changes, likely driven by the byproducts of age-associated inflammatory disease. Potential intervention points are presented.

13.
NPJ Vaccines ; 7(1): 9, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35087081

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne arbovirus that can cause severe congenital birth defects. The utmost goal of ZIKV vaccines is to prevent both maternal-fetal infection and congenital Zika syndrome. A Zika purified inactivated virus (ZPIV) was previously shown to be protective in non-pregnant mice and rhesus macaques. In this study, we further examined the efficacy of ZPIV against ZIKV infection during pregnancy in immunocompetent C57BL6 mice and common marmoset monkeys (Callithrix jacchus). We showed that, in C57BL/6 mice, ZPIV significantly reduced ZIKV-induced fetal malformations. Protection of fetuses was positively correlated with virus-neutralizing antibody levels. In marmosets, the vaccine prevented vertical transmission of ZIKV and elicited neutralizing antibodies that remained above a previously determined threshold of protection for up to 18 months. These proof-of-concept studies demonstrate ZPIV's protective efficacy is both potent and durable and has the potential to prevent the harmful consequence of ZIKV infection during pregnancy.

15.
Front Psychiatry ; 12: 705554, 2021.
Article in English | MEDLINE | ID: mdl-34421684

ABSTRACT

Understanding the mechanism(s) by which maternal immune activation (MIA) during gestation may disrupt neurodevelopment and increase the susceptibility for disorders such as autism spectrum disorder (ASD) or schizophrenia is a critical step in the development of better treatments and preventive measures. A large body of literature has investigated the pathophysiology of MIA in rodents. However, a translatability gap plagues pre-clinical research of complex behavioral/developmental diseases and those diseases requiring clinical diagnosis, such as ASD. While ideal for their genetic flexibility, vast reagent toolkit, and practicality, rodent models often lack important elements of ethological validity. Hence, our study aimed to develop and characterize the prenatal MIA model in marmosets. Here, we adapted the well-characterized murine maternal immune activation model. Pregnant dams were administered 5 mg/kg poly-L-lysine stabilized polyinosinic-polycytidylic acid (Poly ICLC) subcutaneously three times during gestation (gestational day 63, 65, and 67). Dams were allowed to deliver naturally with no further experimental treatments. After parturition, offspring were screened for general health and vigor, and individual assessment of communication development and social behavior was measured during neonatal or adolescent periods. Similar to rodent models, offspring subjected to MIA exhibited a disruption in patterns of communication during early development. Assessment of social behavior in a marmoset-modified 3-chamber test at 3 and 9 months of age revealed alterations in social behavior that, in some instances, was sex-dependent. Together, our data indicate that marmosets are an excellent non-human primate model for investigating the neurodevelopmental and behavioral consequences of exposure to prenatal challenges, like MIA. Additional studies are necessary to more completely characterize the effect of prenatal inflammation on marmoset development and explore therapeutic intervention strategies that may be applicable in a clinical setting.

16.
Aging Cell ; 20(7): e13407, 2021 07.
Article in English | MEDLINE | ID: mdl-34118180

ABSTRACT

The mechanism of kidney injury in aging are not well understood. In order to identify hitherto unknown pathways of aging-related kidney injury, we performed RNA-Seq on kidney extracts of young and aged mice. Expression of chloride (Cl) channel accessory 1 (CLCA1) mRNA and protein was increased in the kidneys of aged mice. Immunostaining showed a marked increase in CLCLA1 expression in the proximal tubules of the kidney from aged mice. Increased kidney CLCA1 gene expression also correlated with aging in marmosets and in a human cohort. In aging mice, increased renal cortical CLCA1 content was associated with hydrogen sulfide (H2 S) deficiency, which was ameliorated by administering sodium hydrosulfide (NaHS), a source of H2 S. In order to study whether increased CLCA1 expression leads to injury phenotype and the mechanisms involved, stable transfection of proximal tubule epithelial cells overexpressing human CLCA1 (hCLCA1) was performed. Overexpression of hCLCA1 augmented Cl- current via the Ca++ -dependent Cl- channel TMEM16A (anoctamin-1) by patch-clamp studies. hCLCA1 overexpression also increased the expression of fibronectin, a matrix protein, and induced the senescence-associated secretory phenotype (SASP). Mechanistic studies underlying these changes showed that hCLCA1 overexpression leads to inhibition of AMPK activity and stimulation of mTORC1 as cellular signaling determinants of injury. Both TMEM16A inhibitor and NaHS reversed these signaling events and prevented changes in fibronectin and SASP. We conclude that CLCA1-TMEM16A-Cl- current pathway is a novel mediator of kidney injury in aging that is regulated by endogenous H2 S.


Subject(s)
Acute Kidney Injury/drug therapy , Chloride Channels/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Age Factors , Animals , Callithrix , Humans , Mice , Mice, Inbred C57BL
17.
PLoS One ; 16(6): e0252093, 2021.
Article in English | MEDLINE | ID: mdl-34106943

ABSTRACT

A singular focus on maternal health at the time of a pregnancy leaves much about perinatal mortality unexplained, especially when there is growing evidence for maternal early life effects. Further, lumping stillbirth and early neonatal death into a single category of perinatal mortality may obscure different causes and thus different avenues of screening and prevention. The common marmoset monkey (Callithrix jacchus), a litter-bearing nonhuman primate, is an ideal species in which to study the independent effects of a mother's early life and adult phenotypes on pregnancy outcomes. We tested two hypotheses in 59 marmoset pregnancies at the Southwest National Primate Research Center and the Barshop Institute for Longevity and Aging Studies. We explored 1) whether pregnancy outcomes were predicted independently by maternal adult weight versus maternal litter size and birth weight, and 2) whether stillbirth and early neonatal death were differentially predicted by maternal variables. No maternal characteristics predicted stillbirth and no maternal adult characteristics predicted early neonatal death. In univariate Poisson models, triplet-born females had a significantly increased rate of early neonatal death (IRR[se] = 3.00[1.29], p = 0.011), while higher birth weight females had a decreased rate (IRR[se] = 0.89[0.05], p = 0.039). In multivariate Poisson models, maternal litter size remained an independent predictor, explaining 13% of the variance in early neonatal death. We found that the later in the first week those neonates died, the more weight they lost. Together these findings suggest that triplet-born and low birth weight females have distinct developmental trajectories underlying greater rates of infant loss, losses that we suggest may be attributable to developmental disruption of infant feeding and carrying. Our findings of early life contributions to adult pregnancy outcomes in the common marmoset disrupt mother-blaming narratives of pregnancy outcomes in humans. These narratives hold that the pregnant person is solely responsible for pregnancy outcomes and the health of their children, independent of socioecological factors, a moralistic framing that has shaped clinical pregnancy management. It is necessary to differentiate temporal trajectories and causes of perinatal loss and view them as embedded in external processes to develop screening, diagnostic, and treatment tools that consider the full arc of a mother's lived experience, from womb to womb and beyond.


Subject(s)
Birth Weight , Callithrix , Litter Size , Animals , Female , Humans , Male , Perinatal Death , Pregnancy , Risk Factors , Stillbirth/veterinary
18.
J Med Primatol ; 50(3): 164-175, 2021 06.
Article in English | MEDLINE | ID: mdl-33913156

ABSTRACT

BACKGROUND: A survey was developed to characterize disease incidence, common pathology lesions, environmental characteristics, and nutrition programs within captive research marmoset colonies. METHODS: Seventeen research facilities completed the electronic survey. RESULTS: Nutritional management programs varied amongst research institutions housing marmosets; eight primary base diets were reported. The most common clinical syndromes reported were gastrointestinal disease (i.e. inflammatory bowel disease like disease, chronic lymphocytic enteritis, chronic malabsorption, chronic diarrhea), metabolic bone disease or fracture, infectious diarrhea, and oral disease (tooth root abscesses, gingivitis, tooth root resorption). The five most common pathology morphologic diagnoses were colitis, nephropathy/nephritis, enteritis, chronic lymphoplasmacytic enteritis, and cholecystitis. Obesity was more common (average 20% of a reporting institution's population) than thin body condition (average 5%). CONCLUSIONS: Through review of current practices, we aim to inspire development of evidence-based practices to standardize husbandry and nutrition practices for marmoset research colonies.


Subject(s)
Bone Diseases, Metabolic , Callithrix , Animals , Diet/veterinary , Incidence , Obesity
20.
Nat Microbiol ; 6(1): 73-86, 2021 01.
Article in English | MEDLINE | ID: mdl-33340034

ABSTRACT

Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.


Subject(s)
COVID-19/veterinary , Callithrix/immunology , Lung/immunology , Macaca mulatta/immunology , Monkey Diseases/virology , Papio/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Animals , Antibodies, Viral/immunology , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , COVID-19/diagnostic imaging , COVID-19/immunology , COVID-19/pathology , Female , Humans , Immunity, Cellular/immunology , Immunoglobulin G/immunology , Inflammation/pathology , Lung/virology , Male , Monkey Diseases/immunology , Myeloid Cells/immunology , Viral Load , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...