Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mar Environ Res ; 120: 214-24, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27592387

ABSTRACT

In marine environments characterised by habitat-forming plants, the relative allocation of resources into vegetative growth and flowering is an important indicator of plant condition and hence ecosystem health. In addition, the production and abundance of seeds can give clues to local resilience. Flowering density, seed bank, biomass and epiphyte levels were recorded for the temperate seagrass Zostera nigricaulis in Port Phillip Bay, south east Australia at 14 sites chosen to represent several regions with different physicochemical conditions. Strong regional differences were found within the large bay. Spathe and seed density were very low in the north of the bay (3 sites), low in the centre of the bay (2 sites) intermediate in the Outer Geelong Arm (2 sites), high in Swan Bay (2 sites) and very high in the Inner Geelong Arm (3 sites). In the south (2 sites) seed density was low and spathe density was high. These regional patterns were largely consistent for the 5 sites sampled over the three year period. Timing of flowering was consistent across sites, occurring from August until December with peak production in October, except during the third year of monitoring when overall densities were lower and peaked in November. Seagrass biomass, epiphyte load, canopy height and stem density showed few consistent spatial and temporal patterns. Variation in spathe and seed density and morphology across Port Phillip Bay reflects varying environmental conditions and suggests that northern sites may be restricted in their ability to recover from disturbance through sexual reproduction. In contrast, sites in the west and south of the bay have greater potential to recover from disturbances due to a larger seed bank and these sites could act as source populations for sites where seed production is low.


Subject(s)
Ecosystem , Environmental Monitoring , Zosteraceae/physiology , Aquatic Organisms , Australia , Biomass , Environment , Reproduction , Seeds
2.
Mar Pollut Bull ; 68(1-2): 30-7, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23398743

ABSTRACT

We investigated the effects of the burrowing cirratulid polychaete Cirriformia filigera (Delle Chiaje, 1828) on benthic respiration and nitrogen regeneration in metal-contaminated estuarine sediments using laboratory mesocosms. C. filigera is a dominant component of assemblages in the most severely contaminated sediments within the Derwent estuary, southern Australia. In the presence of C. filigera sediment O2 consumption doubled, with approximately 55% of this increase due to their respiration and the remaining 45% attributable to oxidation reactions and increased microbial respiration associated with burrow walls. Combined NO3 and NO2 fluxes were unaffected. The addition of labile organic matter did not affect benthic fluxes, in the presence or absence of C. filigera, presumably due to the short timeframe of the experiment and naturally enriched test sediments. The results suggest that a combination of tolerance and burrowing activity enables this species to provide an ecosystem service in the removal of N from contaminated sites.


Subject(s)
Geologic Sediments/chemistry , Metals/toxicity , Nitrogen Cycle , Nitrogen/analysis , Polychaeta/physiology , Water Pollutants, Chemical/toxicity , Adaptation, Physiological , Animals , Ecosystem , Environmental Monitoring , Metals/analysis , South Australia , Water Pollutants, Chemical/analysis
3.
Oecologia ; 172(2): 525-38, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23104271

ABSTRACT

The broad spectrum of anthropogenic pressures on many of the world's coastal bays and estuaries rarely act in isolation, yet few studies have directly addressed the interactive effects of multiple pressures. Port Phillip Bay in southeastern Australia is a semi-enclosed bay in which nutrient management is a major concern. In recent years it has been heavily invaded by marine pests. We manipulated the density of one such invader, the European fanworm Sabella spallanzanii, and showed that it causes changes in the composition of macrofauna in the surrounding sediments, provides habitat for epibiota (both fauna and flora) on Sabella tubes, and reduces the biomass of microphytobenthos on the surrounding sediments. Of greatest concern, however, was the indirect impact on nutrient cycling. We suggest that the impacts on nutrient cycling are largely due to the feeding of Sabella and the epifauna on its tubes, capturing organic N before it reaches the sediment, excreting it back up into the water column as NH4, thereby bypassing sedimentary processes such as denitrification. Most notably, the efficiency of denitrification, the key ecosystem process that permanently removes N from the system, fell by 37-53 % in the presence of Sabella. Importantly though, this study also demonstrated significant spatial variability in fauna, geochemistry and the magnitude of Sabella effects. Given that the effect of Sabella is also likely to vary in time and with changes in density, all of these sources of variability need to be considered when incorporating the effects of Sabella in nutrient management strategies.


Subject(s)
Ecosystem , Geologic Sediments , Introduced Species , Polychaeta , Ammonia/metabolism , Animals , Aquatic Organisms , Australia , Bays , Chlorophyll/metabolism , Chlorophyll A , Denitrification , Nitrogen/metabolism , Pheophytins/metabolism , Phosphates/metabolism , Polychaeta/metabolism , Spatio-Temporal Analysis
4.
Sci Total Environ ; 420: 229-37, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22321900

ABSTRACT

Nutrient inputs to estuarine and coastal waters worldwide are increasing and this in turn is increasing the prevalence of eutrophication and hypoxic and anoxic episodes in these systems. Many urbanised estuaries are also subject to high levels of anthropogenic metal contamination. Environmental O(2) levels may influence whether sediments act as sinks or sources of metals. In this study we investigated the effect of an extended O(2) depletion event (40 days) on fluxes of trace metals (and the metalloid As) across the sediment-water interface in sediments from a highly metal contaminated estuary in S.E. Tasmania, Australia. We collected sediments from three sites that spanned a range of contamination and measured total metal concentration in the overlying water using sealed core incubations. Manganese and iron, which are known to regulate the release of other divalent cations from sub-oxic sediments, were released from sediments at all sites as hypoxia developed. In contrast, the release of arsenic, cadmium, copper and zinc was comparatively low, most likely due to inherent stability of these elements within the sediments, perhaps as a result of their refractory origin, their association with fine-grained sediments or their being bound in stable sulphide complexes. Metal release was not sustained due to the powerful effect of metal-sulphide precipitation of dissolved metals back into sediments. The limited mobilisation of sediment bound metals during hypoxia is encouraging, nevertheless the results highlight particular problems for management in areas where hypoxia might occur, such as the release of metals exacerbating already high loads or resulting in localised toxicity.


Subject(s)
Arsenic/analysis , Cadmium/analysis , Geologic Sediments/chemistry , Water Pollutants/analysis , Zinc/analysis , Anaerobiosis , Arsenic/chemistry , Cadmium/chemistry , Carbon Dioxide/analysis , Oxygen/analysis , Tasmania , Water Pollutants/chemistry , Zinc/chemistry
5.
FEMS Microbiol Ecol ; 75(1): 111-22, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21083579

ABSTRACT

The effects of sediment hypoxia, resulting from increased carbon loads or decreased dissolved oxygen (DO), on nitrogen cycling in estuarine environments is poorly understood. The important role played by bacterial and archaeal ammonia oxidizers in the eventual removal of nitrogen from estuarine environments is likely to be strongly affected by hypoxic events. In this study, an analysis of the effects of different levels of sediment hypoxia (5%, 20% and 75% DO) was performed in a microcosm experiment. Changes in the nutrient fluxes related to nitrification at 5% DO were observed after 4 h. Quantification of the key nitrification gene ammonium monooxygenase (amoA) in both DNA and RNA extracts suggests that bacterial amoA transcription was reduced at both of the lower DO concentrations, while changes in DO had no significant effect on archaeal amoA transcription. There was no change in the diversity of expressed archaeal amoA, but significant change in bacterial amoA transcriptional diversity, indicative of low- and high-DO phylotypes. This study suggests that groups of ammonia oxidizers demonstrate differential responses to changes in sediment DO, which may be a significant factor in niche partitioning of different ammonia oxidizer groups.


Subject(s)
Archaea/genetics , Bacteria/genetics , Nitrogen/metabolism , Oxidoreductases/genetics , Oxygen/analysis , Water Microbiology , Archaea/enzymology , Bacteria/enzymology , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Geologic Sediments/analysis , Geologic Sediments/microbiology , Molecular Sequence Data , Nitrification , Phylogeny , Polymorphism, Restriction Fragment Length , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...