Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 10(1): 51-65, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33306459

ABSTRACT

COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.


Subject(s)
COVID-19/complications , Mutation , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , Female , Humans , Male , Middle Aged , Phylogeny , Polymorphism, Single Nucleotide , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Uruguay/epidemiology , Young Adult
2.
medRxiv ; 2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33052352

ABSTRACT

COVID-19 is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and declared by the World Health Organization a global public health emergency. Among the severe outbreaks across South America, Uruguay has become known for curtailing SARS-CoV-2 exceptionally well. To understand the SARS-CoV-2 introductions, local transmissions, and associations with genomic and clinical parameters in Uruguay, we sequenced the viral genomes of 44 outpatients and inpatients in a private healthcare system in its capital, Montevideo, from March to May 2020. We performed a phylogeographic analysis using sequences from our cohort and other studies that indicate a minimum of 23 independent introductions into Uruguay, resulting in five major transmission clusters. Our data suggest that most introductions resulting in chains of transmission originate from other South American countries, with the earliest seeding of the virus in late February 2020, weeks before the borders were closed to all non-citizens and a partial lockdown implemented. Genetic analyses suggest a dominance of S and G clades (G, GH, GR) that make up >90% of the viral strains in our study. In our cohort, lethal outcome of SARS-CoV-2 infection significantly correlated with arterial hypertension, kidney failure, and ICU admission (FDR < 0.01), but not with any mutation in a structural or non-structural protein, such as the spike D614G mutation. Our study contributes genetic, phylodynamic, and clinical correlation data about the exceptionally well-curbed SARS-CoV-2 outbreak in Uruguay, which furthers the understanding of disease patterns and regional aspects of the pandemic in Latin America.

3.
PLoS One ; 7(4): e35033, 2012.
Article in English | MEDLINE | ID: mdl-22536349

ABSTRACT

Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites.


Subject(s)
Anticestodal Agents/pharmacology , Antiplatyhelmintic Agents/pharmacology , Echinococcus granulosus/drug effects , Fasciola hepatica/drug effects , Helminth Proteins/antagonists & inhibitors , Multienzyme Complexes/antagonists & inhibitors , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Animals , Anticestodal Agents/chemistry , Anticestodal Agents/toxicity , Antiplatyhelmintic Agents/chemistry , Antiplatyhelmintic Agents/toxicity , Cell Line , Drug Evaluation, Preclinical , Echinococcus granulosus/enzymology , Fasciola hepatica/enzymology , Fibroblasts/drug effects , Helminth Proteins/chemistry , Humans , Larva/drug effects , Larva/enzymology , Lymphocytes/drug effects , Mice , Models, Molecular , Multienzyme Complexes/chemistry , NADH, NADPH Oxidoreductases/chemistry , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Oxadiazoles/toxicity , Quantum Theory , Quinoxalines/chemistry , Quinoxalines/pharmacology , Quinoxalines/toxicity , Structure-Activity Relationship , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...