Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 367(6483): 1218-1223, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32165582

ABSTRACT

Spin ices are exotic phases of matter characterized by frustrated spins obeying local "ice rules," in analogy with the electric dipoles in water ice. In two dimensions, one can similarly define ice rules for in-plane Ising-like spins arranged on a kagome lattice. These ice rules require each triangle plaquette to have a single monopole and can lead to different types of orders and excitations. Using experimental and theoretical approaches including magnetometry, thermodynamic measurements, neutron scattering, and Monte Carlo simulations, we establish HoAgGe as a crystalline (i.e., nonartificial) system that realizes the kagome spin ice state. The system features a variety of partially and fully ordered states and a sequence of field-induced phases at low temperatures, all consistent with the kagome ice rule.

2.
Inorg Chem ; 57(20): 12456-12460, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30253103

ABSTRACT

Large single crystals of Yb2Ge2O7 in the cubic Fd3̅ m space group, are synthesized and characterized from a high-temperature hydrothermal method (650°C/200 MPa in 1 M KF). The cubic phase displays spin frustration and possibly nonclassical quantum-spin behavior at low temperature. This is the first report of single crystals of this important phase of size and quality suitable for single-crystal neutron diffraction.

3.
Nat Commun ; 5: 4970, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25233136

ABSTRACT

In condensed matter systems, formation of long-range order (LRO) is often accompanied by new excitations. However, in many geometrically frustrated magnetic systems, conventional LRO is suppressed, while non-trivial spin correlations are still observed. A natural question to ask is then what is the nature of the excitations in this highly correlated state without broken symmetry? Frequently, applying a symmetry breaking field stabilizes excitations whose properties reflect certain aspects of the anomalous state without LRO. Here we report a THz spectroscopy study of novel excitations in quantum spin ice Yb2Ti2O7 under a <001> directed magnetic field. At large positive fields, both right- and left-handed magnon and two-magnon-like excitations are observed. The g-factors of these excitations are dramatically enhanced in the low-field limit, showing a crossover of these states into features consistent with the quantum string-like excitations proposed to exist in quantum spin ice in small <001> fields.

4.
Phys Rev Lett ; 109(16): 167201, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23215118

ABSTRACT

Here we establish the systematic existence of a U(1) degeneracy of all symmetry-allowed Hamiltonians quadratic in the spins on the pyrochlore lattice, at the mean-field level. By extracting the Hamiltonian of Er(2)Ti(2)O(7) from inelastic neutron scattering measurements, we then show that the U(1)-degenerate states of Er(2)Ti(2)O(7) are its classical ground states, and unambiguously show that quantum fluctuations break the degeneracy in a way which is confirmed by experiment. The degree of symmetry protection of the classical U(1) degeneracy in Er(2)Ti(2)O(7) is unprecedented in other materials. As a consequence, our observation of order by disorder is unusually definitive. We provide further verifiable consequences of this phenomenon, and several additional comparisons between theory and experiment.

5.
Rev Sci Instrum ; 83(1): 013113, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22299935

ABSTRACT

We have developed an application of a one-dimensional micro-strip detector for capturing x-ray diffraction data in pulsed magnetic fields. This detector consists of a large array of 50 µm-wide Si strips with a full-frame read out at 20 kHz. Its use substantially improves data-collection efficiency and quality as compared to point detectors, because diffraction signals are recorded along an arc in reciprocal space in a time-resolved manner. By synchronizing with pulsed fields, the entire field dependence of a two-dimensional swath of reciprocal space may be determined using a small number of field pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...