Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 174: 113047, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34871899

ABSTRACT

Anthropogenic debris has been reported in all studied marine environments, including the deepest parts of the sea. Finding areas of accumulation and methods of transport for debris are important to determine potential impacts on marine life. This study analyzed both sediment cores and Remotely Operated Vehicle video to determine the density and distribution of debris, including both micro- and macroplastics, in Norfolk and Baltimore canyons. The average microplastic density in Norfolk Canyon sediment was 37.30 plastic particles m-2 within the canyon and 21.03 particles m-2 on the adjacent slope, suggesting that microplastics could accumulate within submarine canyons. In video transects from both Norfolk and Baltimore canyons, the largest amounts of macroplastic were recorded near the canyon heads. Our findings contribute to a growing evidence base that canyons and their associated benthic invertebrate communities are important repositories and conduits for debris to the deep sea.


Subject(s)
Microplastics , Plastics , Animals , Baltimore , Ecosystem , Environmental Monitoring , Invertebrates
2.
Glob Chang Biol ; 26(4): 2181-2202, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32077217

ABSTRACT

The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep-sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to project changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%-100% in suitable habitat for cold-water corals and a shift in suitable habitat for deep-sea fishes of 2.0°-9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%-30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%-42% of present-day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%-14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep-sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area-based planning and management tools.

3.
J Fish Biol ; 94(4): 621-647, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30762230

ABSTRACT

In August 2007, October 2008 and September-October 2010, 241 Tucker trawl and plankton net tows were conducted at the surface to depths of 1377 m at six locations in the northern and eastern Gulf of Mexico (GOM) to document leptocephalus diversity and determine how assemblage structure, larval size, abundance and isotopic signatures differ across the region and with depth. Overall, 2696 leptocephali representing 59 distinct taxa from 10 families were collected. Five families accounted for 96% of the total catch with Congridae and Ophichthidae being the most abundant. The top four most abundant species composed 59% of the total catch and included: Ariosoma balearicum, Paraconger caudilimbatus, Rhynchoconger flavus and Ophichthus gomesii. Four anguilliform species not previously documented in the GOM as adults or leptocephali were collected in this study, including Monopenchelys acuta, Quassiremus ascensionis, Saurenchelys stylura and one leptocephalus only known from its larval stage, Leptocephalus proboscideus. Leptocephalus catches were significantly greater at night than during the day. Catches at night were concentrated in the upper 200 m of the water column and significantly declined with increasing depth. Leptocephali abundances and assemblages were significantly different between sites on the upper continental slope (c. 500 m depth) and sites on the middle to lower continental slope (c. 1500-2300 m). Sites on the lower continental slope had a mixture of deep-sea demersal, bathypelagic and coastal species, whereas upper-slope sites contained several numerically dominant species (e.g., A. balearicum, P. caudilimbatus) that probably spawn over the continental shelf and upper slope of the GOM. Standard lengths of the four dominant species differed between sites and years, indicating heterochronic reproduction and potential larval source pools within and outside of the GOM. Stable-isotope analyses (δ13 C and δ15 N) conducted on 185 specimens from six families revealed that leptocephali had a wide range of isotopic values at the family and size-class levels. Species in the families Muraenidae, Congridae and Ophichthidae had similar δ15 N values compared with the broad range of δ15 N values seen in the deep-sea families Nemichthyidae, Nettastomatidae and Synaphobranchidae. Stable-isotope values were variably related to length, with δ15 N values being positively size correlated in ophichthids and δ13 C values being negatively size correlated in A. balearicum and P. caudilimbatus. Results suggest that leptocephali feed in various water depths and masses, and on different components of POM, which could lead to niche partitioning. Ecological aspects of these important members of the plankton community provide insight into larval connectivity in the GOM as well as the early life history of Anguilliformes.


Subject(s)
Eels/physiology , Animal Migration , Animals , Behavior, Animal , Eels/classification , Gulf of Mexico , Isotopes/analysis , Larva/classification , Larva/physiology , Population Density , Population Dynamics , Reproduction
4.
Sci Rep ; 8(1): 12383, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120375

ABSTRACT

Cold-water corals provide critical habitats for a multitude of marine species, but are understudied relative to tropical corals. Primnoa pacifica is a cold-water coral prevalent throughout Alaskan waters, while another species in the genus, Primnoa resedaeformis, is widely distributed in the Atlantic Ocean. This study examined the V4-V5 region of the 16S rRNA gene after amplifying and pyrosequencing bacterial DNA from samples of these species. Key differences between the two species' microbiomes included a robust presence of bacteria belonging to the Chlamydiales order in most of the P. pacifica samples, whereas no more than 2% of any microbial community from P. resedaeformis comprised these bacteria. Microbiomes of P. resedaeformis exhibited higher diversity than those of P. pacifica, and the two species largely clustered separately in a principal coordinate analysis. Comparison of P. resedaeformis microbiomes from samples collected in two submarine canyons revealed a significant difference between locations. This finding mirrored significant genetic differences among the P. resedaeformis from the two canyons based upon population genetic analysis of microsatellite loci. This study presents the first report of microbiomes associated with these two coral species.


Subject(s)
Anthozoa/genetics , Anthozoa/microbiology , Biodiversity , Genotype , Microbiota , Animals , Bacteria/classification , Bacteria/genetics , Computational Biology/methods , Metagenome , Metagenomics/methods , Microsatellite Repeats
5.
Environ Sci Technol ; 52(19): 10985-10996, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30148351

ABSTRACT

This study characterizes a decadal assessment of polycyclic aromatic hydrocarbons (PAHs) in the muscle tissues of mesopelagic fish species as indicators of the environmental health of the Gulf of Mexico (GoM) deep-pelagic ecosystem. Mesopelagic fishes were collected prior to the Deepwater Horizon (DWH) oil spill (2007), immediately post-spill (2010), 1 year after the spill (2011), and 5-6 years post-spill (2015-2016) to assess if the mesopelagic ecosystem was exposed to, and retained, PAH compounds from the DWH spill. Results indicated that a 7- to 10-fold increase in PAHs in fish muscle tissues occurred in 2010-2011 (4972 ± 1477 ng/g) compared to 2007 (630 ± 236 ng/g). In 2015-2016, PAH concentrations decreased close to the levels measured in 2007 samples (827 ± 138 ng/g); however, the composition of PAHs still resembles a petrogenic source similar to samples collected in 2010-2011. PAH composition in muscle samples indicated that natural sources (e.g., Mississippi River and natural seeps) or spatial variability within the GoM do not explain the temporal variability of PAHs observed from 2007 to 2016. Furthermore, analysis of different fish tissues indicated the dietary intake and maternal transfer of PAHs as the primary mechanisms for bioaccumulation in 2015-2016, explaining the elevated levels and composition of PAHs in ovarian eggs.


Subject(s)
Petroleum Pollution , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fishes , Gulf of Mexico , Mississippi
6.
PeerJ ; 4: e2529, 2016.
Article in English | MEDLINE | ID: mdl-27703865

ABSTRACT

Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379-382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68-90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

7.
Front Microbiol ; 7: 458, 2016.
Article in English | MEDLINE | ID: mdl-27092120

ABSTRACT

Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

8.
Mar Pollut Bull ; 94(1-2): 241-50, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25778549

ABSTRACT

The blowout of the Deepwater Horizon (DWH) drill-rig produced a surface oil layer, dispersed micro-droplets throughout the water column, and sub-surface plumes. We measured stable carbon and nitrogen isotopes in mesopelagic fishes and shrimps in the vicinity of DWH collected prior to, six weeks after, and one year after the oil spill (2007, 2010 and 2011). In 2010, the year of the oil spill, a small but significant depletion of δ(13)C was found in two mesopelagic fishes (Gonostoma elongatum and Chauliodus sloani) and one shrimp (Systellaspis debilis); a significant δ(15)N enrichment was identified in the same shrimp and in three fish species (G. elongatum, Ceratoscopelus warmingii, and Lepidophanes guentheri). The δ(15)N change did not suggest a change of trophic level, but did indicate a change in diet. The data suggest that carbon from the Deepwater Horizon oil spill was incorporated into the mesopelagic food web of the Gulf of Mexico.


Subject(s)
Crustacea/metabolism , Fishes/metabolism , Petroleum Pollution , Animals , Carbon , Carbon Isotopes/metabolism , Environmental Monitoring , Gulf of Mexico , Mexico , Nitrogen Isotopes/metabolism
9.
PLoS One ; 7(11): e50133, 2012.
Article in English | MEDLINE | ID: mdl-23209656

ABSTRACT

The δ(15)N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ(15)N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ(15)N values. Regional differences in the δ(15)N values of phenylalanine confirmed that bulk tissue δ(15)N values reflect region-specific water mass biogeochemistry controlling δ(15)N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ∼2.9) largely align with expectations from stomach content studies (TP ∼3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ∼3.2) were lower than TPs derived from stomach content studies (TP∼4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.


Subject(s)
Fishes/metabolism , Nitrogen Isotopes/chemistry , Nitrogen/chemistry , Amino Acids/chemistry , Animals , Ecology , Ecosystem , Food Chain , Gastric Mucosa/metabolism , Gastrointestinal Contents/chemistry , Geography , Geology , Phenylalanine/chemistry , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...