Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Rev. bras. plantas med ; 17(2): 239-245, Apr-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-746135

ABSTRACT

ABSTRACT: The objective of this study was to develop an in vitro protocol for the micropropagation of Pluchea sagittalis (Lam.) Cabrera. Plants were regenerated in vitro from stem segments. The procedure employed includes: 1) surface sterilization of shoots by immersion in 70% ethanol for 10 s followed by 1.0% NaOCl for 10 min, and subsequent immersion in 0.05% HgCl2 for 3 min and two washes with sterile distilled water; 2) induction of root and shoot by culture on hormone-free Murashige and Skoog medium (MS); 3) acclimatization of 60 day-old-plantlets in soil under ex vitro conditions. Minimum contamination was observed for apical shoot explants (10%). However, independently of the explant position in the stem, all explants regenerated new shoots. Various successive cultivations from stem explants every 60 days during more than 1 year have been shown to be a suitable method to propagate P. sagittalis in vitro. Low salt concentration (25% of the normal concentration) in the medium promoted greater growth of plantlets because the plants had a higher number of roots and longer roots in such an environment. Our protocol for the micropropagation of P. sagittalis can be accomplished as a two-step procedure within a short period of time (two months) before transplanting.


RESUMO: O Objetivo deste estudo foi desenvolver um protocolo para a micropropagação in vitro da Pluchea sagittalis (Lam.) Cabrera. Plantas foram regeneradas in vitro a partir de segmentos de ramo. O procedimento empregado incluiu: 1) esterilização da superfície de ramos pela imersão em etanol 70% por 10 s seguida pela de NaOCl 1.0% por 10 min e, subsequentemente, em HgCl2 0.05% por 3 min e duas lavagens em água destilada e esterilizada; 2) indução de raízes e parte aérea pelo cultivo em meio Murashige & Skoog (MS) isento de hormônio; 3) aclimatização de plantas com 60 dias de idade em solo sob condições ex vitro. Contaminação mínima foi observada em explantes caulinares do ápice (10%). Entretanto, independentemente da posição do segmento no caule, todos explantes regeneraram novos ramos. Vários cultivos sucessivos a cada 60 dias durante mais de um ano tem mostrado ser um método adequado para a propagação in vitro de P. sagittalis. A baixa concentração de sais no meio (25% da concentração normal) promoveu maior crescimento das plântulas devido às mesmas apresentarem maior número e comprimento de raízes. O protocolo para a micropropagação da P. sagittalis pode ser executado em procedimento de duas etapas dentro de um período de tempo curto (dois meses) antes do transplantio.


Subject(s)
Asteraceae/classification , Salts/pharmacology , In Vitro Techniques/instrumentation , Crops, Agricultural
2.
Meat Sci ; 93(1): 98-104, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22938774

ABSTRACT

Physicochemical properties and fatty acid profiles of meat from Bos indicus, Bos taurus and crossbred B. taurus×B. indicus bullocks (n=216), finished on pasture or grain, were used to estimate the effects of heterosis. Meat quality and fatty acid profiles generally benefited with crossbreeding, but the advantages from heterosis differed among finishing systems. The Warner-Bratzler shear-force in fresh and aged meat was reduced due to heterosis in pasture-finishing, but the effect was minor under grain-finishing. With pasture-finishing, heterosis caused an increase of 5% in CLA concentration, but few other changes in fatty acid profiles. In grain-finishing, heterosis caused a reduction in intramuscular fat and cholesterol, increased amounts of PUFA, n-6 fatty acids and PUFA/SFA ratio, and a decline in atherogenic index. The Δ(9) desaturase estimated activity in crossbreds showed a behavior close to B. indicus, suggesting the existence of few loci and a dominance genetic effect on enzymes involved in fatty acid synthesis and metabolism.


Subject(s)
Animal Feed , Breeding , Diet , Dietary Fats/metabolism , Fatty Acids/genetics , Hybrid Vigor , Meat/analysis , Animal Husbandry/methods , Animals , Atherosclerosis/chemically induced , Cattle , Cholesterol, Dietary/metabolism , Edible Grain , Fatty Acids/metabolism , Fatty Acids, Unsaturated/genetics , Fatty Acids, Unsaturated/metabolism , Genetic Loci , Linoleic Acids, Conjugated/genetics , Linoleic Acids, Conjugated/metabolism , Meat/standards , Muscle, Skeletal/metabolism , Poaceae , Species Specificity , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Stress, Mechanical
3.
Article in English | MEDLINE | ID: mdl-21869902

ABSTRACT

To evaluate the effectiveness of Uncaria tomentosa in minimizing the side effects of chemotherapy and improving the antioxidant status of colorectal cancer (CRC) patients, a randomized clinical trial was conducted. Patients (43) undergoing adjuvant/palliative chemotherapy with 5-Fluorouracil/leucovorin + oxaliplatin (FOLFOX4) were split into two groups: the UT group received chemotherapy plus 300 mg of Uncaria tomentosa daily and the C group received only FOLFOX4 and served as a control. Blood samples were collected before each of the 6 cycles of chemotherapy, and hemograms, oxidative stress, enzymes antioxidants, immunologic parameters, and adverse events were analyzed. The use of 300 mg of Uncaria tomentosa daily during 6 cycles of FOLFOX4 did not change the analyzed parameters, and no toxic effects were observed.

4.
Bull Environ Contam Toxicol ; 86(3): 272-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21336859

ABSTRACT

Plantlets of Pfaffia glomerata (Spreng.) were exposed in vitro for 30 days to five lead levels (0-400 µM) to analyze the effects on growth and oxidative stress and responses of various antioxidants vis-à-vis lead accumulation. The plantlets showed significant lead accumulation in roots (1,532 µg g(-1) DW) with a low root to shoot lead translocation (ca. 3.6%). The growth of plantlets was negatively affected by various lead treatments, although the level of photosynthetic pigments did not alter significantly in response to any lead treatment. However, plantlets suffered from oxidative stress as suggested by the significant increase in malondialdehyde levels in root (8.48 µmol g(-1) FW) and shoot (3.20 µmol g(-1) FW) tissues with increasing lead treatments. In response to the imposed toxicity, increases in the activities of catalase in root (4.14 ∆E min(-1) mg(-1) protein) and shoot (3.46 ∆E min(-1) mg(-1) protein) and superoxide dismutase in root (345.32 units mg(-1) protein) and shoot (75.26 units mg(-1) protein), respectively, were observed, while the levels of non-protein thiols and ascorbic acid were not affected significantly in either roots or shoots.


Subject(s)
Amaranthaceae/drug effects , Lead/toxicity , Soil Pollutants/toxicity , Amaranthaceae/growth & development , Amaranthaceae/metabolism , Brazil , Carotenoids/metabolism , Catalase/metabolism , Chlorophyll/metabolism , Dose-Response Relationship, Drug , Drug Tolerance , Malondialdehyde/metabolism , Oxidative Stress , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Medicinal/drug effects , Plants, Medicinal/growth & development , Plants, Medicinal/metabolism , Random Allocation , Superoxide Dismutase/metabolism
5.
J Anim Sci ; 89(1): 221-32, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21178183

ABSTRACT

A study was conducted to characterize lipid profiles in the M. longissimus thoracis of commercial Brazilian beef and to assess how those profiles are influenced by finishing system, genetic group, and their interaction. Intramuscular fat (IMF) and fatty acid (FA) profiles were determined in 160 bulls of the Bos taurus (n = 75) and Bos indicus (n = 85) genetic groups, finished on pasture (n = 46) or with grain supplementation (n = 114) and slaughtered in a commercial abattoir. Finishing system had a major impact on the deposition of IMF, as well as on the concentration of SFA, PUFA, and their ratio, but genetic groups showed important differences in the ability to convert SFA into cis-9 MUFA and to convert 16:0 into 18:0. When compared with pasture-finished animals, those finished with grain had greater content of IMF and SFA (P < 0.01), similar amounts of MUFA (P > 0.05), and about one-half the amount of PUFA (P < 0.01). Except for MUFA, differences in FA profiles among finishing systems were mostly mediated through their effect on IMF, even though the relationship of IMF with groups of FA differed among finishing systems. Under grain finishing, B. taurus had less SFA and greater MUFA than B. indicus (P < 0.01), but no differences were observed in PUFA (P > 0.05). With pasture-finishing, no differences were observed among the 2 genetic groups in SFA and MUFA (P > 0.05), but PUFA were decreased in B. taurus (P < 0.01). When genetic groups were compared in grain-finishing, B. taurus had a decreased ability for elongation and B. indicus had a decreased aptitude for desaturation of FA. On the other hand, with pasture-finishing a greater deposition of intermediate FA from ruminal biohydrogenation was observed in B. indicus than in B. taurus. Overall, FA profiles were affected more by finishing system in B. indicus than in B. taurus.


Subject(s)
Body Composition/genetics , Diet/veterinary , Fatty Acids/metabolism , Adipose Tissue/chemistry , Aging , Animal Feed , Animal Husbandry , Animal Nutritional Physiological Phenomena , Animals , Body Composition/physiology , Cattle , Edible Grain , Fatty Acids/chemistry , Male
6.
Biometals ; 23(2): 295-305, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20063044

ABSTRACT

Oxidative stress caused by mercury (Hg) was investigated in Pfaffia glomerata plantlets grown in nutrient solution using sand as substrate. Thirty-day-old acclimated plants were treated for 9 days with four Hg levels (0, 1, 25 and 50 microM) in the substrate. Parameters such as growth, tissue Hg concentration, toxicity indicators (delta-aminolevulinic acid dehidratase, delta-ALA-D, activity), oxidative damage markers (TBARS, lipid peroxidation, and H(2)O(2) concentration) and enzymatic (superoxide dismutase, SOD, catalase, CAT, and ascorbate peroxidase, APX) and non-enzymatic (non-protein thiols, NPSH, ascorbic acid, AsA, and proline concentration) antioxidants were investigated. Tissue Hg concentration increased with Hg levels. Root and shoot fresh weight and delta-ALA-D activity were significantly decreased at 50 microM Hg, and chlorophyll and carotenoid concentration were not affected. Shoot H(2)O(2) concentration increased curvilinearly with Hg levels, whereas lipid peroxidation increased at 25 and 50 microM Hg, respectively, in roots and shoots. SOD activity showed a straight correlation with H(2)O(2) concentration, whereas CAT activity increased only in shoots at 1 and 50 microM Hg. Shoot APX activity was either decreased at 1 microM Hg or increased at 50 lM Hg. Conversely, root APX activity was only increased at 1 microM Hg. In general, AsA, NPSH and proline concentrations increased upon addition of Hg, with the exception of proline in roots, which decreased. These changes in enzymatic and non-enzymatic antioxidants had a significant protective effect on P. glomerata plantlets under mild Hg-stressed conditions.


Subject(s)
Amaranthaceae/drug effects , Amaranthaceae/metabolism , Antioxidants/metabolism , Mercury/pharmacology , Amaranthaceae/anatomy & histology , Ascorbic Acid/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Oxidants/metabolism , Oxidative Stress , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Superoxide Dismutase/metabolism
7.
J Hazard Mater ; 172(1): 479-84, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19625122

ABSTRACT

The present study was designed to study the process of stress adaptation in roots and shoot of Zea mays seedlings grown under hydroponic conditions during exposure to lead (Pb) (0-200 microM) for 1-7 d. The alterations in growth and in the level of various biochemical parameters were accessed vis-à-vis Pb accumulation. The accumulation of Pb increased in a concentration-duration-dependent manner, however its translocation from root to shoot was low. At the same time, the level of malondialdehyde (MDA) increased with increasing Pb concentration. However, growth parameters, such as dry weight and root length did not show a significant decline to any of the Pb concentrations. In addition, the level of photosynthetic pigments decreased only upon exposure to high Pb concentrations. These results suggested an alleviation of the stress that was presumably being achieved by antioxidants viz., superoxide dismutase (SOD) and catalase (CAT) as well as ascorbic acid (AsA), which increased linearly with increasing Pb levels and exposure time. However, the level of non-protein thiols (NP-SH) in roots, in general, showed a decline beyond 4d that could be attributed to their consumption for the purpose of Pb detoxification. In conclusion, Zea mays can be used as an indicator species for Pb, and the various antioxidants might play a key role in the detoxification of Pb induced toxic effects.


Subject(s)
Antioxidants/metabolism , Hydroponics/methods , Lead/toxicity , Seedlings/metabolism , Zea mays/metabolism , Adsorption , Ascorbic Acid/chemistry , Catalase/chemistry , Catalase/metabolism , Chlorophyll/chemistry , Lead/chemistry , Lipid Peroxidation , Malondialdehyde/chemistry , Models, Statistical , Porphobilinogen Synthase/chemistry , Seedlings/drug effects , Sulfhydryl Compounds/chemistry , Superoxide Dismutase/metabolism
8.
Biometals ; 22(5): 779-92, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19330492

ABSTRACT

A hydroponic experiment was carried out to characterize the oxidative stress responses of two potato cultivars (Solanum tuberosum L. cvs. Asterix and Macaca) to cadmium (Cd). Plantlets were exposed to four Cd levels (0, 50, 100, 150 and 200 microM) for 7 days. Cd concentration was increased in both roots and shoot. Number of sprouts and roots was not decreased, whereas Cd treatment affected the number of nodal segments. Chlorophyll content and ALA-D activity were decreased in both cultivars, whereas carotenoids content was decreased only in Macaca. Cd caused lipid peroxidation in roots and shoot of both cultivars. Protein oxidation was only verified at the highest Cd level. H(2)O(2) content was increased in roots and shoot of Asterix, and apparently, a compensatory response between roots and shoot of Macaca was observed. SOD activity was inhibited in roots of Asterix at all Cd treatments, whereas in Macaca it was only increased at two highest Cd levels. Shoot SOD activity increased in Asterix and decreased in Macaca. Root CAT activity in Asterix decreased at 100 and 150 microM, whereas in Macaca it decreased only at 50 microM. Shoot CAT activity was decreased in Macaca. Root AsA content in Macaca was not affected, whereas in shoot it was reduced at 100 microM and increased at 200 microM. Cd caused increase in NPSH content in roots and shoot. Our results suggest that Cd induces oxidative stress in both potato cultivars and that of the two cultivars, Asterix showed greater sensitivity to Cd levels.


Subject(s)
Cadmium/toxicity , Oxidative Stress/drug effects , Soil Pollutants/toxicity , Solanum tuberosum/drug effects , Solanum tuberosum/metabolism , Carotenoids/metabolism , Catalase/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Oxidation-Reduction/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Proteins/metabolism , Solanum tuberosum/growth & development , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...