Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Macro Lett ; 10(1): 65-70, 2021 01 19.
Article in English | MEDLINE | ID: mdl-35548980

ABSTRACT

A library of synthetic elastin-like glycopolypeptides were synthesized and screened by microscale thermophoresis to identify key structural parameters affecting lectin binding efficacy. While polypeptide backbone size and glycovalency were found to have little influence, the presence of a linker at the anomeric position of galactose and the absence of positive charge on the polypeptide residue holding the sugar unit were found to be critical for the binding to RCA120.


Subject(s)
Elastin , Lectins , Galactose/chemistry , Glycopeptides/chemistry , Lectins/chemistry , Peptides
2.
Hepatology ; 73(4): 1531-1550, 2021 04.
Article in English | MEDLINE | ID: mdl-32558958

ABSTRACT

BACKGROUND AND AIMS: Small-molecule flux in tissue microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods. We developed two independent techniques that allow the quantification of advection (flow) and diffusion in individual bile canaliculi and in interlobular bile ducts of intact livers in living mice, namely fluorescence loss after photoactivation and intravital arbitrary region image correlation spectroscopy. APPROACH AND RESULTS: The results challenge the prevailing "mechano-osmotic" theory of canalicular bile flow. After active transport across hepatocyte membranes, bile acids are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts is diffusion augmented by regulatable advection. Photoactivation of fluorescein bis-(5-carboxymethoxy-2-nitrobenzyl)-ether in entire lobules demonstrated the establishment of diffusive gradients in the bile canalicular network and the sink function of interlobular ducts. In contrast to the bile canalicular network, vectorial transport was detected and quantified in the mesh of interlobular bile ducts. CONCLUSIONS: The liver consists of a diffusion-dominated canalicular domain, where hepatocytes secrete small molecules and generate a concentration gradient and a flow-augmented ductular domain, where regulated water influx creates unidirectional advection that augments the diffusive flux.


Subject(s)
Bile Canaliculi/diagnostic imaging , Bile Canaliculi/metabolism , Biological Transport, Active/physiology , Intravital Microscopy/methods , Portal Vein/diagnostic imaging , Portal Vein/metabolism , Animals , Bile/metabolism , Bile Acids and Salts/metabolism , Cell Membrane/metabolism , Computer Simulation , Fluorescent Dyes/administration & dosage , Hepatocytes/metabolism , Injections, Intravenous/methods , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods
3.
Biomacromolecules ; 22(1): 76-85, 2021 01 11.
Article in English | MEDLINE | ID: mdl-32379435

ABSTRACT

Selective lectin binding and sorting was achieved using thermosensitive glycoconjugates derived from recombinant elastin-like polypeptides (ELPs) in simple centrifugation-precipitation assays. A recombinant ELP, (VPGXG)40, containing periodically spaced methionine residues was used to enable chemoselective postsynthetic modification via thioether alkylation using alkyne functional epoxide derivatives. The resulting sulfonium groups were selectively demethylated to give alkyne functionalized homocysteine residues, which were then reacted with azido-functionalized monosaccharides to obtain ELP glycoconjugates with periodic saccharide functionality. These modifications were also found to allow modulation of ELP temperature dependent water solubility. The multivalent ELP glycoconjugates were evaluated for specific recognition, binding and separation of the lectin Ricinus communis agglutinin (RCA120) from a complex protein mixture. RCA120 and ELP glycoconjugate interactions were evaluated using laser scanning confocal microscopy and dynamic light scattering. Due to the thermoresponsive nature of the ELP glycoconjugates, it was found that heating a mixture of galactose-functionalized ELP and RCA120 in complex media selectively yielded a phase separated pellet of ELP-RCA120 complexes. Based on these results, ELP glycoconjugates show promise as designer biopolymers for selective protein binding and sorting.


Subject(s)
Elastin , Lectins , Peptides , Solubility , Temperature
4.
Biochemistry ; 59(38): 3570-3581, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32822537

ABSTRACT

ATP and GTP are exceptionally important molecules in biology with multiple, and often discrete, functions. Therefore, enzymes that bind to either of them must develop robust mechanisms to selectively utilize one or the other. Here, this specific problem is addressed by molecular studies of the human NMP kinase AK3, which uses GTP to phosphorylate AMP. AK3 plays an important role in the citric acid cycle, where it is responsible for GTP/GDP recycling. By combining a structural biology approach with functional experiments, we present a comprehensive structural and mechanistic understanding of the enzyme. We discovered that AK3 functions by recruitment of GTP to the active site, while ATP is rejected and nonproductively bound to the AMP binding site. Consequently, ATP acts as an inhibitor with respect to GTP and AMP. The overall features with specific recognition of the correct substrate and nonproductive binding by the incorrect substrate bear a strong similarity to previous findings for the ATP specific NMP kinase adenylate kinase. Taken together, we are now able to provide the fundamental principles for GTP and ATP selectivity in the large NMP kinase family. As a side-result originating from nonlinearity of chemical shifts in GTP and ATP titrations, we find that protein surfaces offer a general and weak binding affinity for both GTP and ATP. These nonspecific interactions likely act to lower the available intracellular GTP and ATP concentrations and may have driven evolution of the Michaelis constants of NMP kinases accordingly.


Subject(s)
Adenosine Triphosphate/metabolism , Adenylate Kinase/metabolism , Guanosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Adenylate Kinase/chemistry , Biocatalysis , Guanosine Triphosphate/chemistry , Humans , Molecular Dynamics Simulation , Protein Binding , Substrate Specificity
5.
Nat Chem ; 12(8): 732-739, 2020 08.
Article in English | MEDLINE | ID: mdl-32632184

ABSTRACT

Various pathogenic bacteria use post-translational modifications to manipulate the central components of host cell functions. Many of the enzymes released by these bacteria belong to the large Fic family, which modify targets with nucleotide monophosphates. The lack of a generic method for identifying the cellular targets of Fic family enzymes hinders investigation of their role and the effect of the post-translational modification. Here, we establish an approach that uses reactive co-substrate-linked enzymes for proteome profiling. We combine synthetic thiol-reactive nucleotide derivatives with recombinantly produced Fic enzymes containing strategically placed cysteines in their active sites to yield reactive binary probes for covalent substrate capture. The binary complexes capture their targets from cell lysates and permit subsequent identification. Furthermore, we determined the structures of low-affinity ternary enzyme-nucleotide-substrate complexes by applying a covalent-linking strategy. This approach thus allows target identification of the Fic enzymes from both bacteria and eukarya.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Adenosine Monophosphate/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bartonella/metabolism , Biocatalysis , Crystallography, X-Ray , HeLa Cells , Humans , Membrane Proteins/chemistry , Nucleotidyltransferases/chemistry , Pasteurellaceae/metabolism , Protein Processing, Post-Translational , Protein Structure, Tertiary , Sequence Alignment , Substrate Specificity , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
6.
Acta Biomater ; 99: 154-167, 2019 11.
Article in English | MEDLINE | ID: mdl-31425892

ABSTRACT

Despite significant progress in the field of biomaterials for bone repair, the lack of attention to the vascular and nervous networks within bone implants could be one of the main reasons for the delayed or impaired recovery of bone defects. The design of innovative biomaterials should improve the host capacity of healing to restore a functional tissue, taking into account that the nerve systems closely interact with blood vessels in the bone tissue. The aim of this work is to develop a cell-free and growth factor-free hydrogel capable to promote angiogenesis and innervation. To this end, we have used elastin-like polypeptides (ELPs), poly(ethylene glycol) (PEG) and increasing concentrations of the adhesion peptide IKVAV (25% (w/w) representing 1.7 mM and 50% (w/w) representing 4.1 mM) to formulate and produce hydrogels. When characterized in vitro, hydrogels have fine-tunable rheological properties, microporous structure and are biocompatible. At the biological level, 50% IKVAV composition up-regulated Runx2, Osx, Spp1, Vegfa and Bmp2 in mesenchymal stromal cells and Tek in endothelial cells, and sustained the formation of long neurites in sensory neurons. When implanted subcutaneously in mice, hydrogels induced no signals of major inflammation and the 50% IKVAV composition induced higher vessel density and formation of nervous terminations in the peripheral tissue. This novel composite has important features for tissue engineering, showing higher osteogenic, angiogenic and innervation potential in vitro, being not inflammatory in vivo, and inducing angiogenesis and innervation subcutaneously. STATEMENT OF SIGNIFICANCE: One of the main limitations in the field of tissue engineering remains the sufficient vascularization and innervation during tissue repair. In this scope, the development of advanced biomaterials that can support these processes is of crucial importance. Here, we formulated different compositions of Elastin-like polypeptide-based hydrogels bearing the IKVAV adhesion sequence. These compositions showed controlled mechanical properties, and were degradable in vitro. Additionally, we could identify in vitro a composition capable to promote neurite formation and to modulate endothelial and mesenchymal stromal cells gene expression, in view of angiogenesis and osteogenesis, respectively. When tested in vivo, it showed no signs of major inflammation and induced the formation of a highly vascularized and innervated neotissue. In this sense, our approach represents a potential advance in the development of new strategies to promote tissue regeneration, taking into account both angiogenesis and innervation.


Subject(s)
Angiogenesis Inducing Agents/chemistry , Biocompatible Materials/chemistry , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Angiogenesis Inducing Agents/metabolism , Animals , Biocompatible Materials/metabolism , Bone Morphogenetic Protein 2/metabolism , Cell Proliferation , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Elastin/chemistry , Endothelial Cells/metabolism , Gene Expression Regulation , Humans , Hydrogels/metabolism , Laminin/chemistry , Mesenchymal Stem Cells/metabolism , Mice , Neurons/metabolism , Osteogenesis/drug effects , Osteopontin/genetics , Osteopontin/metabolism , Peptide Fragments/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Porosity , Prosthesis Implantation , Rats, Wistar , Rheology , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Surface Properties , Tissue Engineering , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
7.
Biochim Biophys Acta Biomembr ; 1861(8): 1489-1501, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31247162

ABSTRACT

Free radical scavengers like α-phenyl-N-tert-butylnitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) have been widely used as protective agents in various biomimetic and biological models. A series of three amphiphilic Trolox and PBN derivatives have been designed by adding to those molecules a perfluorinated chain as well as a sugar group in order to render them amphiphilic. In this work, we have studied the interactions between these derivatives and lipid membranes to understand how they influence their ability to prevent membrane lipid oxidation. We showed the derivatives better inhibited the AAPH-induced oxidation of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC) small unilamellar vesicles (SUVs) than the parent compounds. One of the derivatives, bearing both PBN and Trolox moieties on the same fluorinated carrier, exhibited a synergistic antioxidant effect by delaying the oxidation process. We next investigated the ability of the derivatives to interact with DLiPC membranes in order to better understand the differences observed regarding the antioxidant properties. Surface tension and fluorescence spectroscopy experiments revealed the derivatives exhibited the ability to form monolayers at the air/water interface and spontaneously penetrated lipid membranes, underlying pronounced hydrophobic properties in comparison to the parent compounds. We observed a correlation between the hydrophobic properties, the depth of penetration and the antioxidant properties and showed that the location of these derivatives in the membrane is a key parameter to rationalize their antioxidant efficiency. Molecular dynamics (MD) simulations supported the understanding of the mechanism of action, highlighting various key physical-chemical descriptors.


Subject(s)
Antioxidants/pharmacology , Chromans/chemistry , Membrane Lipids/chemistry , Nitrogen Oxides/chemistry , Drug Synergism , Fluorine/chemistry , Lipid Peroxidation , Membranes, Artificial , Oxidation-Reduction
8.
ACS Macro Lett ; 8(12): 1648-1653, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-35619386

ABSTRACT

Selective modifications at methionyl residues in proteins have attracted particular attention in recent years. Previously described methods to chemoselectively modify the methionine side chain in elastin-like polypeptides (ELPs) involved nucleophilic addition using alkyl halides or epoxides yielding a sulfonium group with a positive charge strongly affecting ELPs' physicochemical properties, in particular their thermal responsiveness. We herein explored the recently reported ReACT method (Redox-Activated Chemical Tagging) based on the use of oxaziridine derivatives, yielding an uncharged sulfimide as an alternative route for chemoselective modifications of methionine-containing ELPs in aqueous medium. The different synthetic strategies are herein compared in order to provide a furnished toolbox for further biorthogonal postmodifications of any protein polymers.

9.
Proc Natl Acad Sci U S A ; 115(12): 3012-3017, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29507216

ABSTRACT

Enzymatic substrate selectivity is critical for the precise control of metabolic pathways. In cases where chemically related substrates are present inside cells, robust mechanisms of substrate selectivity are required. Here, we report the mechanism utilized for catalytic ATP versus GTP selectivity during adenylate kinase (Adk) -mediated phosphorylation of AMP. Using NMR spectroscopy we found that while Adk adopts a catalytically competent and closed structural state in complex with ATP, the enzyme is arrested in a catalytically inhibited and open state in complex with GTP. X-ray crystallography experiments revealed that the interaction interfaces supporting ATP and GTP recognition, in part, are mediated by coinciding residues. The mechanism provides an atomic view on how the cellular GTP pool is protected from Adk turnover, which is important because GTP has many specialized cellular functions. In further support of this mechanism, a structure-function analysis enabled by synthesis of ATP analogs suggests that a hydrogen bond between the adenine moiety and the backbone of the enzyme is vital for ATP selectivity. The importance of the hydrogen bond for substrate selectivity is likely general given the conservation of its location and orientation across the family of eukaryotic protein kinases.


Subject(s)
Adenosine Triphosphate/metabolism , Adenylyl Cyclases/metabolism , Guanosine Triphosphate/metabolism , Adenylyl Cyclase Inhibitors/chemistry , Adenylyl Cyclase Inhibitors/pharmacology , Inosine Triphosphate/genetics , Inosine Triphosphate/metabolism , Kinetics , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
10.
Biochim Biophys Acta Biomembr ; 1859(12): 2495-2504, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28982534

ABSTRACT

Free radical scavengers such as α-phenyl-N-tert-butylnitrone (PBN) have been widely used as protective agents in several biological models. We recently designed two PBN derivatives by adding a cholesterol moiety to the parent nitrone to increase its lipophilicity. In addition to the cholesterol, a sugar group was also grafted to enhance the hydrophilic properties at the same time. In the present work we report on the synthesis of a third derivative bearing only a cholesterol moiety and the physical chemical and antioxidant characterization of these three derivatives. We demonstrated they were able to form stable monolayers at the air/water interface and with the two derivatives bearing a sugar group, repulsive interactions with 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) were observed. We next investigated the interaction with DLPC on a liposome model. Fluorescence spectroscopy experiments showed the addition of a cholesterol moiety causes an ordering effect whereas the presence of the sugar group led to a disordering effect. The protective effect against lipid oxidation was then investigated using dynamic light scattering and the formation of conjugated dienes was quantified spectrophotometrically. Two oxidizing systems were tested, i.e. the AAPH-thermolysis which generates peroxyl radicals and the Fenton reagent which is responsible of the formation of hydroxyl radicals. Due to their membrane localization, the three cholesteryl-PBN derivatives are able to prevent lipid oxidation with the two types of radical inducers but with a different mode of action.


Subject(s)
Cyclic N-Oxides/chemistry , Free Radical Scavengers/chemistry , Liposomes/chemistry , Nitrogen Oxides/chemistry , Amidines/chemistry , Cholesterol/analogs & derivatives , Cyclic N-Oxides/chemical synthesis , Free Radical Scavengers/chemical synthesis , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/chemistry , Hydrophobic and Hydrophilic Interactions , Hydroxyl Radical/antagonists & inhibitors , Hydroxyl Radical/chemistry , Lipid Peroxidation , Nitrogen Oxides/chemical synthesis , Peroxides/antagonists & inhibitors , Peroxides/chemistry , Phosphatidylcholines/chemistry
11.
Curr Top Med Chem ; 17(18): 2006-2022, 2017.
Article in English | MEDLINE | ID: mdl-28260508

ABSTRACT

Nitrones have been extensively used for the detection of transient free radicals using electron paramagnetic resonance. Since the mid-80's, nitrones have also been widely used as protective agents against oxidative stress in several biological models. Due to the high potency of nitrones, there has been extensive research on the development of derivatives with improved biological and spin trapping properties as well as enhanced intra-cellular compartmentalization. The chemical and pharmacological properties of nitrones depend mainly on the connectivity as well as on the nature and the position of the substituents on the nitrone group. Therefore, novel bioactive molecules have been designed and the development of specific nitrone derivatives is aimed at providing new therapeutic approaches and perspectives in prevention, treatment and rehabilitation. This review focuses on the effects that are exerted by the most promising nitrone antioxidants that are available. A comprehensive description of the unique molecular mechanism and mediators that are targeted by these compounds is given to guide and enable novel and successful approaches to the treatment of a broad spectrum of diseases associated with stress and aging. New promising nitrone compounds are now available for further development by translational medicine that exert superior bioactivity and efficacy.


Subject(s)
Nitrogen Oxides/therapeutic use , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Mitochondria/drug effects , Nitrogen Oxides/chemistry , Nitrogen Oxides/pharmacology , Spectrometry, Mass, Electrospray Ionization , Spin Labels
12.
J Org Chem ; 82(1): 135-142, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27997175

ABSTRACT

Two bifunctional α-phenyl-N-cyclohexyl nitrones were synthesized with the expectation that the cyclohexyl ring will impart lipophilicity to the molecule, high reactivity to the nitronyl group, and stability to the spin adducts formed. The synthesis of the acid nitrone 4 and its corresponding tert-butyl ester 3 was initiated by a Michael reaction to introduce the cyclohexyl ring. A Zn/AcOH-mediated reduction of the nitro functionality followed by condensation onto benzaldehyde generated the nitronyl function. In agreement with their high lipophilicity values, nitrone 3 was insoluble in water, while nitrone 4 exhibited a poor water solubility. It was determined that the presence of the cyclohexyl ring did not affect either the reduction or oxidation potentials of the nitronyl group in comparison to the classical α-phenyl-N-tert-butylnitrone (PBN). The spin trapping ability of 3 and 4 was investigated by EPR for oxygen- and carbon-centered radicals. In most cases, the nitrones gave rise to a standard six-line EPR spectrum whose values were in agreement with the literature, accompanied by a minor second species. In DMSO, the half-lives of nitrone 3 and 4-OOH adducts were double that of PBN, suggesting that the stabilization comes from the cyclohexyl ring and/or the electronic effect of the carboxylic acid.

13.
Basic Res Cardiol ; 111(4): 40, 2016 07.
Article in English | MEDLINE | ID: mdl-27164904

ABSTRACT

Obesity and diabetes are associated with higher cardiac vulnerability to ischemia-reperfusion (IR). The cardioprotective effect of regular exercise has been attributed to ß3-adrenergic receptor (ß3AR) stimulation and increased endothelial nitric oxide synthase (eNOS) activation. Here, we evaluated the role of the ß3AR-eNOS pathway and NOS isoforms in exercise-induced cardioprotection of C57Bl6 mice fed with high fat and sucrose diet (HFS) for 12 weeks and subjected or not to exercise training during the last 4 weeks (HFS-Ex). HFS animals were more sensitive to in vivo and ex vivo IR injuries than control (normal diet) and HFS-Ex mice. Cardioprotection in HFS-Ex mice was not associated with increased myocardial eNOS activation and NO metabolites storage, possibly due to the ß3AR-eNOS pathway functional loss in their heart. Indeed, a selective ß3AR agonist (BRL37344) increased eNOS activation and had a protective effect against IR in control, but not in HFS hearts. Moreover, iNOS expression, nitro-oxidative stress (protein s-nitrosylation and nitrotyrosination) and ROS production during early reperfusion were increased in HFS, but not in control mice. Exercise normalized iNOS level and reduced protein s-nitrosylation, nitrotyrosination and ROS production in HFS-Ex hearts during early reperfusion. The iNOS inhibitor 1400 W reduced in vivo infarct size in HFS mice to control levels, supporting the potential role of iNOS normalization in the cardioprotective effects of exercise training in HFS-Ex mice. Although the ß3AR-eNOS pathway is defective in the heart of HFS mice, regular exercise can protect their heart against IR by reducing iNOS expression and nitro-oxidative stress.


Subject(s)
Myocardial Reperfusion Injury/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Obesity/complications , Physical Conditioning, Animal/physiology , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Myocardial Ischemia/metabolism , Nitric Oxide Synthase Type III/metabolism , Receptors, Adrenergic, beta-3/metabolism
14.
Bioconjug Chem ; 27(3): 772-81, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26850367

ABSTRACT

We report herein the synthesis of a divalent amphiphilic carrier onto which α-phenyl-N-tert-butyl nitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) antioxidants were grafted to give the divalent derivative called FATxPBN. The divalent carrier consists of two lysine amino acids as a scaffold upon which the antioxidant moieties are grafted, a perfluorinated chain that supplies hydrophobicity, and a sugar-based polar headgroup that ensures water solubility. For the sake of comparison, a divalent PBN derivative called FADiPBN was also synthesized. The self-aggregation properties of FATxPBN and FADiPBN were studied by means of surface tension, dynamic light scattering, and transmission electron microscopy methods, and showed they form small micelles (i.e., 12 and 6 nm diameter, respectively) at submillimolar concentrations (i.e., 0.01 and 0.05 mM, respectively), in agreement with partition coefficient values. The superior antioxidant properties of FATxPBN over FADiPBN and the parent compounds PBN and Trolox were demonstrated using in vitro ABTS(•+) reduction (98%) and soybean lipoxygenase inhibition (94%) assays. Finally, FATxPBN was found to significantly inhibit hyperglycemia-induced toxicity on an ex-vivo rat model, demonstrating its potency as a bioactive antioxidant against oxidative stress-induced damage.


Subject(s)
Amino Acids/chemistry , Antioxidants/chemical synthesis , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Rats , Rats, Wistar
15.
J Org Chem ; 79(14): 6615-26, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24968285

ABSTRACT

In this work, a series of α-phenyl-N-tert-butyl nitrones bearing one, two, or three substituents on the tert-butyl group was synthesized. Cyclic voltammetry (CV) was used to investigate their electrochemical properties and showed a more pronounced substituent effect for oxidation than for reduction. Rate constants of superoxide radical (O2(•-)) reactions with nitrones were determined using a UV-vis stopped-flow method, and phenyl radical (Ph(•)) trapping rate constants were measured by EPR spectroscopy. The effect of N-tert-butyl substitution on the charge density and electron density localization of the nitronyl carbon as well as on the free energies of nitrone reactivity with O2(•-) and HO2(•) were computationally rationalized at the PCM/B3LYP/6-31+G**//B3LYP/6-31G* level of theory. Theoretical and experimental data showed that the rates of the reaction correlate with the nitronyl carbon charge density, suggesting a nucleophilic nature of O2(•-) and Ph(•) addition to the nitronyl carbon atom. Finally, the substituent effect was investigated in cell cultures exposed to hydrogen peroxide and a correlation between the cell viability and the oxidation potential of the nitrones was observed. Through a combination of computational methodologies and experimental methods, new insights into the reactivity of free radicals with nitrone derivatives have been proposed.


Subject(s)
Nitrogen Oxides/chemical synthesis , Molecular Conformation , Nitrogen Oxides/chemistry , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...